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Abstract

This project evaluates the effectiveness of moving target defense (MTD) techniques using
a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD
extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed
PLADD and proven the existence of a defender strategy that pushes a rational attacker out
of the game, demonstrated how limited the strategies available to an attacker are in PLADD,
and derived analytic expressions for the expected utility of the game’s players in multiple
game variants. We have created an algorithm for finding a defender’s optimal PLADD strat-
egy. We show that in the special case of achieving deterrence in PLADD, MTD is not always
cost effective and that its optimal deployment may shift abruptly from not using MTD at
all to using it as aggressively as possible. We believe our effort provides basic, fundamental
insights into the use of MTD, but conclude that a truly practical analysis requires model
selection and calibration based on real scenarios and empirical data. We propose several
avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of
real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computa-
tional game theory-based approaches such as coevolution to allow scaling to the real world
beyond the limitations of analytical analysis and classical game theory, (4) mapping the
game to real-world scenarios, (5) taking player risk into account when designing a strategy
(in addition to expected payoff), (6) improving our understanding of the dynamic nature of
MTD-inspired games by using a martingale representation, defensive forecasting, and tech-
niques from signal processing, and (7) using adversarial games to develop inherently resilient
cyber systems.
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1 Motivation

National security and our national economy are both highly dependent on the safe and secure
operation of a huge range of networked computing and control systems.

Software developers are getting better at building commodity computing systems that have
a smaller average defect rate [6]. The fact that we experience less frequent random faults and
crashes when interacting with our personal computers, phones, and web services than we once
did provides anecdotal evidence for this. Fewer flaws are good news for reliability. Today,
low to medium consequence enterprises run their organizations on commodity hardware and
software with high confidence.

However, the current safety and reliability state of the art is inadequate for systems that are
subject to attack by an intelligent, adaptable, and well-resourced adversary. In this case,
we cannot depend on faults being exercised with low probability based on their relatively
low frequency. Attackers find and exploit low density flaws routinely. As long as we cannot
remove all flaws and produce perfect systems and associated processes, we need additional
security techniques that help us operate effectively in an imperfect world.

Moving target defenses (MTDs) are one category of mitigations that use diversity, random-
ization, and change to make exploiting vulnerabilities more costly for an adversary without
having to find and remove all flaws from a system [10]. MTDs come in different flavors that
typically transform some aspect of a system from static and known into dynamic and/or
hidden. For example an MTD might identify information required by an adversary to mount
a successful attack, then randomize and hide that information with the hope that the addi-
tional cost of discovering it will make the attack infeasible, or at least uneconomical. Another
approach limits the scope of a successful attack, often without knowing that it occurred, by
periodically performing a reset to a known good state. Still other techniques promote even-
tual recovery by holding some set of resources in reserve. Okhravi et al. have provided a
thorough survey of contemporary MTDs [18].

Some MTDs, like address-space layout randomization (ASLR) [24] and managed entropy
random number generators [14], have been widely deployed and have seen major success;
others like network address randomization are often discussed, but have not been widely
adopted. Many questions remain about which MTDs increase adversary costs, by how much,
and how to use them effectively without breaking the defender’s bank.

This paper explores the value of MTD. We have developed a strategic game called PLADD,
which stands for Probabilistic Learning Attacker, Dynamic Defender (PLADD), that cap-
tures what we believe are important, basic aspects of MTD. We take an abstract modeling
and analysis approach by intentionally ignoring details that are potentially important for
implementing realistic MTD, but whose complexity might detract from our understanding of
MTD’s fundamental properties and behavior. We first present a simple taxonomy of MTDs
to frame our discussion. We then describe PLADD, followed by an analysis of the game and
finally present some initial findings and design guidance based on results from experiments
within our simplified context. The key questions we hope to begin to address are:

• What benefit does using MTD provide?
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• If MTD is effective, when does one best use it, i.e., what are the best parameters and
most suitable application scenarios?

We use a variety of techniques to explore the behavior and value of our basic formulation
of MTD including analytic game theory, simulation, and stochastic programming. Each ap-
proach has its own advantages and disadvantages. For example, simulation is quick and easy
to implement and can capture environmental details that are hard to represent analytically.
Analytic approaches generalize more readily to whole classes of abstract scenarios. Stochas-
tic programming combines the advantages of a bottom up implementation strategy while
supporting the derivation of rigorous bounds on MTD performance.

1.1 Categories of Moving Target Defense

Based on a comprehensive survey of proposed MTD techniques [18], we have distilled MTDs
into several general classes. We list them here in the order of their frequency of occurrence
in the survey.

1. Randomized secret: Randomize some aspect of a system that an attacker needs to
know about to mount a successful attack. Hide a key value that describes the random
state from an attacker. For example, ASLR [24], randomized, keyed instruction sets [2,
13], randomized system call table [5], randomized IP or other network identification [1].

2. N-variant systems with voting: Deploy N versions of a system or component that
are thought to fail independently. A proxy distributes user inputs to all N variants.
Outputs are majority voted to select the ultimate response or to detect deviant behav-
ior [7]. In the ideal case, an attacker must find a way to exploit a majority of the set
of N systems simultaneously to be successful.

3. Scheduled renewal: Reset an environment to a desirable or known-good state accord-
ing to some schedule or strategy. For example, password reset, Apache process pools,
revert to virtual machine snapshot, or micro-reboots [4].

4. Reserve for recovery: Ensure that some fraction of a defender’s resources are with-
held from attacker access long enough that it is impractical for an attacker to compro-
mise a complete system. Examples of this style of MTD include the Yarrow/Fortuna
cryptographic random number generator [14], or the dynamic generation algorithms
and the peer to peer controls used by botnets [22].

5. Shuffle: Deploy N versions of a system or component that are thought to fail inde-
pendently. Each request is serviced by an unpredictable member of the pool. It is
hoped that the uncertainty about which member of the pool will service a given request
complicates exploitation.

6. Chaff : Pollute the space of systems and services with decoys that distract, delay and
potentially reveal an attacker as they attempt to access and exploit the decoys [20].
Legitimate users have access to additional information, withheld from attackers, so
they can avoid decoys.
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1.2 The Essence of MTD

All of the categories of MTD described above have two important characteristics in common
that we believe form the essence of moving target defense.

1. There is some information that, when held by the attacker, gives them a competitive
advantage.

2. The defender has the ability to take that information away from the attacker (at least
temporarily).

We believe PLADD incorporates these essential MTD features and may allow us to study the
basic behaviors and effectiveness of MTD without becoming bogged down in implementation
details.

2 Definition of the PLADD Game

The PLADD game is based on the FlipIt game [28]. FlipIt is intentionally simple, but
exhibits interesting and complicated behaviors that provide insight into certain kinds of
adversarial cyber scenarios. PLADD attempts to retain FlipIt’s simplicity, but adds features
that capture the key elements of MTD. It intentionally avoids including important, but
complicating implementation details. Our goal is to achieve some general insights about
MTDs using this incomplete, but illustrative model.

2.1 FlipIt Review

In FlipIt, two players, the defender and the attacker, vie for control of a single shared resource.
Each player can make a move at any time by incurring a fixed cost. Defender and attacker
costs are independent and the magnitude of the costs is a game parameter. When a player
moves, they immediately gain control of the resource if it was controlled by their opponent
or retain control of the resource if they already controlled it. Control is retained until the
other player moves. The utility of each player is calculated as the player’s payout, which is
the amount of time they controlled the resource minus the sum of costs the player incurred
for all moves. Note that costs and payouts are both specified in units of time to make payout
and cost comparable. A strategy in FlipIt consists of the schedule of moves a player makes.

In FlipIt, the players cannot observe when their adversary makes a move (i.e. when they lose
control of the resource). A player only knows that they control the resource immediately
after their own moves, which earns FlipIt the sub-title “game of stealthy takeover”. Figure 1
shows an example of a FlipIt game and how the resource changes hands between an attacker
and a defender as the game progresses.

The original FlipIt paper analyzes this basic game and several extensions where the attacker is
afforded progressively more information about the defender’s strategy such as their average
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Figure 1: An illustrative example of the FlipIt game showing the
resource changing hands between the attacker (red) and the defender
(blue) as time progresses from left to right.

move rate. Subsequent papers by the original authors and others extend FlipIt to study
multiple resources [15], multiple classes of attacker [16], and the ability of a defender to
probe the state of the resource [19].

2.2 PLADD Extensions to the FlipIt Game

PLADD has several features that distinguish it from FlipIt. First, attackers do not take
immediate control of the resource when they move, but are subject to a random time-to-
success delay. Second, the probability distribution of the attacker’s time-to-success changes
according to the state of the game. This change represents the attacker’s ability to learn.
Third, defenders have two moves at their disposal. The first move, referred to as a “take”,
seizes control of the resource. The second move, referred to as a “morph”, seizes control of
the resource and takes information away from an attacker. Both types of defender moves
succeed immediately. Fourth, the attacker is able to detect defender moves under certain
conditions. Costs are incurred by the attacker and defender for each type of move. The
following subsections provide detailed descriptions each of the features of the PLADD game.

2.2.1 Attacker Time-to-Success

In PLADD, an attacker does not seize control of the resource immediately when they move.
Rather, the attacker will gain control at some random time after initiating an attack. For
example, if an attacker starts an attack at time t it will succeed at some future time t+s where
s, the attacker’s time-to-success, is a random variable drawn from a probability distribution
f(s). The random time-to-success represents the typically stochastic nature of cyber attacks.

Figure 2 illustrates how the time-to-success delay impacts the progression of the PLADD
game. In this example, the attacker begins an attack immediately following a defender move,
however the attack does not succeed until a future point in time. The attacker controls the
resource from the time the attack succeeds until the defender’s next move.

2.2.2 Attacker Learning

In PLADD, the distribution governing the attacker’s time-to-success changes depending on
the state of the game. These changes represent the attacker’s ability to learn about the de-
fender’s system. At the beginning of the game, f(s) = fbase(s), a distribution that represents
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Figure 2: Illustration of the impact of the time-to-success distribution
on the control of the resource.

Figure 3: The attacker is subject to two different time-to-success dis-
tributions, indicated here with exponential CDFs.

a low state of knowledge for the attacker. We expect that this distribution will have rela-
tively little density at small values of s which means that it is unlikely, but not impossible,
for an attacker to succeed quickly against a new defense they are not familiar with. Once an
attacker succeeds, f(s) changes to flearned(s) to reflect the fact that the attacker has learned
something new about the defender’s system in the process of preparing for and executing a
successful attack. Hence, flearned is likely to have greater density closer to s = 0, reflect-
ing the attacker’s ability to succeed earlier due to decreased uncertainty. Figure 3 shows a
cumulative distribution function (CDF) for a notional fbase(s) and flearned(s).

2.2.3 Defender Moves

The defender begins the game in control of the resource and has two move types available
to them. A take immediately seizes control of the resource if it is controlled by the attacker,
much like the standard FlipIt move. Take moves have no effect if the defender currently
controls the resource. Ongoing attacks are not impacted by the take move.

The morph move, has multiple effects. Like the take move, it immediately takes control of
the resource if the attacker has control. Unlike the take move, it cancels any attack that has
been initiated, but hasn’t yet succeeded and sets the attacker’s time-to-success distribution
to fbase. These two additional features make the morph move more powerful than the take
move.

The ability of the morph to unconditionally set the attacker’s time-to-success distribution
to fbase represents the defender’s moving target defense, i.e., it takes information away from
the attacker.
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Figure 4: Illustration of the progress of the PLADD game for the
attacker and defender.

2.2.4 Information Available to the Players

In PLADD, the information available to the defender is the same as in FlipIt. The defender
cannot obtain information on the state of the resource unless they make a move, at which
point they will know they control the resource.

Unlike FlipIt, the attacker is able to detect defender moves under certain conditions. First,
an attacker can detect both types of defender moves when the attacker controls the resource.
This implies that if the attacker has control of the resource, they can readily detect when
they lose control. Second, an attacker can detect a morph move even if they do not control
the resource since morph moves are assumed to cancel ongoing attacks. It is assumed that
only a single attack can be in progress at any point in time.

Figure 4 shows a portion of the time line for a notional example of the PLADD game. This
example begins when the defender makes a morph move. Since the attacker can detect this
move, they start a new attack using the fbase distribution. While this attack is in progress,
the defender makes two take moves, which have no impact since the defender controls the
resource. Once the attack succeeds, the attacker controls the resource until the next take
move. At this point the attacker detects that they have lost control of the resource and
they begin an attack using the flearned distribution. This attack does not succeed before the
defender’s next morph move. When the morph move occurs, the attack is interrupted and
the attacker starts a new attack using the fbase distribution.

2.2.5 Player Move Costs

A defender is not informed about any attacker moves and incurs a fixed cost of ctake or
cmorph for the take and morph moves respectively. Because morph is a more capable move,
we expect morphs to be more expensive than takes.

An attacker incurs two attack costs. As in FlipIt, they pay a fixed cost to initiate a new
attack, which is denoted by α. They also incur a variable cost proportional to the duration
of the attack, which we will call β.

8



2.2.6 Summary of PLADD Parameters and Notation

The list below summarizes the parameters used in the PLADD game:

• fbase(s): The attacker’s time-to-success distribution that represents a low state of knowl-
edge for the attacker

• fbase(s): The attacker’s time-to-success distribution when the attacker has learned
something new about the defender’s system

• α: The attacker’s fixed cost to initiate a new attack

• β: The attacker’s variable cost related to the duration of an attack

• ctake: The defender’s fixed cost for initiating a take move

• cmorph: The defender’s fixed cost for initiating a morph move

• τ : The defender period or, when subscripted, the gaps between defender moves

• N : The number of take moves between morphs in a game that includes morphs

2.3 Strategies and Utilities

As in FlipIt, both the attacker and defender receive a payout in units of time proportional
to the time they control the resource. They also incur costs, as described above, for making
moves. The attacker’s and defender’s objective is to maximize their utility.

utility = “cumulative duration of control′′ − “cumulative costs′′.

Strategies in the game consist of selecting if, when, and what type of moves should be made.

2.4 Game Types

In this paper, our ultimate goal is to examine the value of MTD. To that end, we distinguish
between two types of PLADD games.

• A version of PLADD in which both take and morph moves are available. We call this
version the “finite” game because the morph moves split games into finite chunks played
between subsequent morph moves.

• A version of PLADD in which no morph move is available. We call this the “infinite”
version of the game in contrast to the finite version described above because morph
moves do not break the game into chunks.

9



2.5 Limited Attacker Strategy

An interesting, and unintentional, consequence of the game definition, is that the attacker
appears to have limited freedom to specify a strategy. In PLADD, if the attacker’s time to
success distribution monotonically decreases, i.e., they are more likely to succeed sooner than
later, it is always in the attacker’s best interest to initiate an attack immediately if they do
not control the resource. A proof appears in Section 3.1.2.

3 Analysis of PLADD

In this section we describe our analysis of PLADD. We begin by deriving analytic solutions
for the attacker and defender utilities for the infinite and finite versions of the PLADD game
given a variety of assumptions and restrictions. For the specific case of defenders using
a periodic strategy and exponentially distributed attacker time-to-success, we perform an
analysis of the value of MTD in PLADD. Finally, we derive general equations for defender
utility with no restriction on defender strategy or time-to-success distribution and describe
an algorithm for selecting the optimal defender deterrence strategy in PLADD.

3.1 Infinite Game

This subsection analyzes the infinite version of the PLADD game and derives expressions
for calculating the attacker utility and controlling it by means of the defender strategy. We
start with an equation for the utility of an attacker given a general defender strategy. We
then consider the case where a defender is restricted to periodic strategies and show that
such strategies are sufficient to push the attacker out of the game in the case of general
time-to-success distributions. We then apply our results to an exponential distribution of
the attacker time-to success, show that a periodic defender strategy that pushes the attacker
out of the game is unique, and derive an explicit equation from which such a strategy can
be calculated.

In general, we would like to characterize the dependence of the attacker’s expected utility on
the defender’s strategy and its parameters, in expectation that such a dependence may be
used to the defender’s advantage.

We make the following assumptions, which ensure that strategies are realistic:

• Both the attacker and the defender have finite budgets with which to execute their
strategies and therefore will do a finite number of moves in any finite time interval. We
believe this assumption does not limit the applicability of our analysis or of the results.

• Aside from the attacker time-to-success switching from fbase to flearned when they first
succeed, there is no other learning occurring during the game. We understand that
implicit information about the defender’s strategy and the attacker’s time-to-success
distribution is available in the game. For example, the attacker is notified when they
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lose control of the resource and can use this fact to infer information about the de-
fender’s strategy. However, for simplicity, we have chosen not to take these sources
of information into account. The more general question of adaptive strategies that
respond to online learning is an interesting and promising area of future work.

The attacker’s utility depends on the defender’s strategy. In the case of the infinite PLADD
game, the defender’s strategy can be represented as s = {ti, i = 1, ...,∞}, which represents
an infinite sequence of times where the defender will make moves. In the infinite game all
moves are take moves, there are no morph moves. Given the defender strategy, we can
calculate the attacker expected utility for the next move of the game, until they lose control
of the resource.

As one innovative part of this analysis, we analyze the attacker expected utility at time t,
when they lose control1. By definition, this time t coincides with a move by the defender. In
this way we are partitioning the infinite game into manageable chunks defined by the points
when the attacker loses control of the resource. Calculating the expected utility at the time
of the attacker’s loss of control allows us to roll in the attacker costs and benefits into the
expected value of the attacker utility for the next period and treat the attacker cumulative
net utility function as a martingale (see [25] or [29] for a more detailed description of such
an approach).

In the infinite duration game, the attacker utility, u, for an attack duration x drawn from
f(x) and given a defender strategy s can be expressed as follows:

u = −α− βx+

(
min
ti∈s

(ti : ti ≥ x)− x

)
, (1)

where f(x) is a probability density function of attacker time-to-success.

The last term in this equation is simply the duration of attacker control of the resource and
is visually represented in Figure 2 as the red line.

The expected utility from this attack can be calculated as

E[u] = −α− β
∫ ∞

0
xf(x) dx+

∫ ∞
0

(
min
ti∈s

(ti : ti ≥ x)− x

)
f(x) dx (2)

3.1.1 Periodic Solution for the Infinite Game

In the infinite case we do not have an a priory reason to assume a non-periodic strategy for the
defender. We therefore start with a periodic defender strategy, calculate the expected attacker

1The analytic approach we take is inspired by work from Glenn Shafer, Vladimir Vovk, and Akimichi Takemura
on Game Theoretic Probability and Defensive Forecasting. Their approach to strategic interaction using martingales
served as a starting point for the formulation of the problem, the attacker expected utility definition, and the choice
of deterrence as a cornerstone of the analysis
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utility given a periodic defender strategy and show that the periodic defender strategy is
sufficient in the infinite case to drive the attacker out of the game. We specifically show that
the defender has the ability to control the attacker expected utility and in particular drive it
to zero. We interpret the ability to achieve an outcome where the attacker expected payoff
is zero as the ability to drive a rational attacker out of the game. The defender also has
an option of maximizing his own utility. In this latter case, there is generally no guarantee
that the attacker would choose not to play, however there are game parameters where the
attacker expected utility would be strictly negative in this case.

As a starting point, we derive the attacker expected utility and show that for a periodic
defender strategy with period τ it is a function of τ . This explicit dependence of the attacker
utility on the defender strategy gives the defender an ability to make attacks unprofitable
and to partially control the attacker’s utility or risk taken.

Our initial goal is to find out the conditions under which such a break-even value of τ exists
and calculate its value. An explicit value for τ also allows calculating if a specific budget
would allow a defender to force the attacker out of the game. For the purposes of this analysis,
we assume that the attacker success distribution, f(x), remains constant. We further assume
that the defender moves at periodic time intervals τ and the defender strategy s can therefore
be represented as follows: s = {ti, : ti+1 − ti = τ, i = 1, ...,∞, t1 = 0}

The attacker incremental utility can now be expressed by:

u = −α− βx+

(⌈
x

τ

⌉
τ − x

)
, (3)

where the last term is the duration of the attacker control, and d.e is the ceiling function.
The more general formulation in Equation 1 can be simplified because of the defender move
periodicity.

The expected utility from this attack can therefore be calculated as:

E[u] = −α− β
∫ ∞

0
xf(x) dx+

∫ ∞
0

(⌈
x

τ

⌉
τ − x

)
f(x) dx (4)

Given that the ceiling function is just a step-wise function that goes up by 1 at each integer
increment of τ , the expression for the attacker utility can be simplified to:

E[u] = c1 +

∞∑
k=1

∫ kτ

(k−1)τ
(kτ − x)f(x) dx (5)

It is interesting to notice that the expression under the integral in Equation 5 can be thought
of as a convolution of the defender strategy or its effect on the attacker payoff and the attacker
success probability density function, thus bringing multiple connections to signal processing,
reliability, stochastic control, and Fourier transformations in addition to the, already noted,
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connections to martingales and game-theoretic probability. In this interpretation, the effec-
tive defender strategy is represented by a saw-tooth function that linearly decreases in the
range of (τ, 0) on each interval (ti, ti+1) for any i ∈ {1, ...,∞}. This also allows a possibility
of using well-established deconvolution algorithms by both the attacker and defender to es-
timate each others’ strategies, in addition to the possibility of applying learning approaches
to the same problem.

Equation 5 can be further simplified to

E[u] = c1 + τ
∞∑
k=1

k

∫ kτ

(k−1)τ
f(x) dx−

∞∑
k=1

∫ kτ

(k−1)τ
xf(x) dx, (6)

where

c1 = −α− β
∫ ∞

0
xf(x) dx (7)

Existence of Optimal τ . In this section we present the analysis of the dependence of E[u]
on τ and show that there is an optimal value of τ which ensures that the attacker’s expected
payoff is zero. We investigate this dependence by deriving an explicit expression for dE[u]

d τ .
Starting with Equation 6 and differentiating it with respect to τ , we obtain:

dE[u]

d τ
=
∞∑
k=1

k

∫ kτ

(k−1)τ
f(x) dx+ τ

∞∑
k=1

k

[
kf(kτ)− (k − 1)f(k − 1)τ

]
−

−
∞∑
k=1

[
k k τf(kτ)− (k − 1)(k − 1)τf((k − 1)τ)

]
(8)

Some of the terms above immediately cancel each other out. By simplifying the remaining
terms, we further obtain:

dE[u]

d τ
=

∞∑
k=1

k

(∫ kτ

(k−1)τ
f(x) dx− τf(kτ)

)
(9)

The geometric interpretation of this equation is that the positive and negative component
for each k represent the difference between the exact probability of attacker success between
points (k − 1)τ and kτ and its approximation obtained by multiplying the length of the
interval (τ) by the value of the probability density function value at its right end (f(kτ)).
Therefore, it follows immediately that

lim
τ→0

dE[u]

d τ
= 0 (10)
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We could also show that

lim
τ→∞

dE[u]

d τ
= 1 (11)

The latter equation simply means that if the defender never re-takes, then the attacker utility
grows linearly with time.

We observe that: limτ→0E[u] < 0, because the attacker has a negative fixed cost, and that
there exist a τ at which the attacker expected utility E[u] is strictly positive, given Equation
11. Given that E[u] is a continuous function of τ and it takes a negative value at 0 and
a positive value at some τ > 0, we conclude by the intermediate value theorem that there
exists a τ0, such that E[u(τ0)] = 0 for any f(x) with a finite first moment.

We have therefore proven that there exists a value of τ below which the attacker expected
utility is negative and at which the attacker expected utility is zero. The attacker cumulative
utility is also a martingale at τ0. Therefore, the expected value of the attacker total expected
payoff as calculated along any path in the game is 0 as well.

Defender optimal strategy: τ0. The optimal defender period τ for any continuous dis-
tribution f(x) that has a valid first moment can be calculated by setting the left side of
Equation 5 to zero and numerically solving for τ0 that sets the right side of that equation to
zero as well.

3.1.2 Value of delaying attacks

The PLADD game gives the attacker only two strategic choices when they do not control
the resource. They can 1) delay their attack, and 2) restart an ongoing attack after some
time. Restarting an attack ensures on average that the attacker will increase their cost and
time-to-success and does not appear to be a viable option. Delaying an attack, however,
may bring the attacker payoff and utility benefits, as well as reductions in the expected cost
of the attack. Intuitively, the attacker may be able to shift the most likely part of their
success distribution to the right in time, so that they are more likely to succeed right after
a defender take move, and thus may have longer control of the resource before it is retaken
by the defender.

We illustrate this intuition with a simple example: Assume that the defender plays with
period τ > 0 and that the attacker’s time-to-success function is δ(x− 3τ

4 ), where δ(.) is the
Dirac delta function, and x is the time since beginning of the attack. By definition of the
game, when played without delay, the beginning of the attack coincides with the defender
take moves and results in the attacker controlling the resource for τ

4 between the defender
take moves. Therefore, the attacker would benefit from delaying the beginning of their attack
by τ

4 + ε in order have control of the entire following period between defender moves (ε is an
arbitrary small real number that is negligible as compared to τ . It is only needed here to
ensure no ties associated with defender and attacker moving at the same time). By delaying
the attack by ε+ 1

4 the expected average attacker payoff can be made arbitrarily close to τ
2 .

By design of the game the attacker would then have control in exactly half of the control
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periods and therefore achieve a payoff of τ − ε in every other period, thus bringing their
average payoff arbitrary close to τ

2 . By the design of the game, when delaying the attack by
τ
4 + ε the attacker would also be attacking in every other time period, rather than in every
period in the game without delay, therefore ensuring 50% cost reduction in addition to the
payoff benefits.

There are two caveats with this example: 1) f(x) = δ(.) is a special function and does not
belong to the set of functions for which we’ve proven the existence of an optimal τ0, and 2)
periodic play may not be the optimal strategy in this case for the defender. Yet, even with
those caveats, this example demonstrates that there are situations when delay is a viable
strategic option for the attacker.

This example also demonstrates the richness of such an apparently simple game as PLADD:
even in the situation where the attacker seemingly has no strategic choices, such actions as
delaying the attack may still tilt the odds significantly in the attacker’s favor. Combined with
the attacker’s ability to estimate the defender strategy by learning or by deconvolution, this
may change the game outcomes significantly, and constitutes a promising venue for future
research.

In the remainder of this section, we demonstrate that the delay brings no benefit to the
attacker in the case of a monotonically declining time-to-success distribution f(x) and provide
an additional example when delay is beneficial to the attacker.

As before, we assume that the attacker time-to-success, x, is distributed according to f(x),
when starting at time 0. To evaluate the contribution of a delay to attacker utility, we assume
the current time is 0, and the attacker will wait until time δ to start their attack. We call
the time when the attacker succeeds x, as before, with the difference that x can only occur
starting at δ and is therefore distributed by f(x − δ). The delay does not affect the fixed
cost α, however it changes the variable cost to β(x− δ), because we assume that the variable
cost will not be incurred until the attack started at time δ.

By not incurring any cost while waiting to start the attack, we are assigning the most
optimistic value to delay, because in reality, waiting for a proper time to start an attack may
incur costs as well. In reality, the attacker will incur at least opportunity costs, i.e., they may
have fewer opportunities to learn about the defender without attacking, and the defender
will have an opportunity to direct their efforts on strengthening their system during the lull
in the attacks.

With the delay δ, the attacker utility can be expressed, similar to Equation 3, as follows:

u = −α− β(x− δ) +

⌈
x

τ

⌉
τ − x, (12)

where x is drawn from f(x − δ). The expected utility, given a delay δ, can be expressed as
follows:
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E[u(δ)] = −α− β
∫ ∞

0
xf(x) dx+

∫ ∞
δ

(⌈
x

τ

⌉
τ − x

)
f(x− δ) dx (13)

We can verify that E[u(δ)]|δ=0 from Equation 13 equals E[u(0)] from Equation 4. The
incremental utility ∆E[u(δ)] from delaying the attack by δ can be calculated by subtracting
the right hand side of Equation 4 from the right-hand side of Equation 13:

∆E[u(δ)] =

∫ ∞
δ

(⌈
x

τ

⌉
τ − x

)
f(x− δ) dx−

∫ ∞
0

(⌈
x

τ

⌉
τ − x

)
f(x) dx (14)

Given that we know that ∆E[u(0)] = 0, we can evaluate the derivative of ∆E[u(δ)] with
respect to δ in the positive vicinity of 0. If the sign is positive or negative, then introducing
small delays would result in increased or decreased attacker payoffs respectively. If the sign
of the derivative remains the same on R+ for a particular attacker distribution, then that
would imply that delay always has either positive or negative effect on the attacker payoff.
We can express the derivative of ∆E[u(δ)] with respect to δ as follows

d∆E[u(δ)]

d δ
= −

∫ ∞
δ

(⌈
x

τ

⌉
τ − x

)(
d f(x− δ)

d x

)
dx−

(⌈
δ

τ

⌉
τ − δ

)
f(0) (15)

We assume that δ < τ . This assumption is based on the intuition that delaying by exactly τ
gives the exact same expectation for the attacker utility as if no delay occurred in an infinite
game. Therefore, a larger than τ delay would bring no additional benefit as compared with
a smaller than τ delay.

After integrating by parts, we can simplify Equation 15 as follows:

d∆E[u(δ)]

d δ
= −

(⌈
x

τ

⌉
τ − x

)
f(x− δ)

∣∣∣∣∣
∞

δ

+

∫ ∞
δ

d

d x

(⌈
x

τ

⌉
τ − x

)
f(x− δ) dx−

(⌈
δ

τ

⌉
τ − δ

)
f(0) (16)

The first and the last term in the above cancel each other, when we recognize that

lim
x→∞

−

(⌈
x

τ

⌉
− x

)
f(x− δ) = 0.

Now we are left with
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d∆E[u(δ)]

d δ
=

∫ ∞
δ

d

d x

(⌈
x

τ

⌉
τ − x

)
f(x− δ) dx =

=

∫ ∞
δ

X(
x

τ
)f(x− δ)− f(x− δ) dx =

= −
∫ ∞

0
f(y) dy +

∞∑
k=1

f(kτ − δ) = −1 +
∞∑
k=1

f(kτ − δ) (17)

where X is the Shah sampling function. Therefore, a delay may be worthwhile depending
on the value of f at τ -length intervals.

We will now show that for any monotonically decreasing2 f , the value of the delay is at
best zero. Suppose, given the constraint that f must be monotonically decreasing, that the
attacker had the power to shape f to try to make a delay worthwhile.

For a given δ and τ , the best the attacker can do is design f as a function which takes discrete
downward steps at intervals of τ length, beginning at τ − δ. The reason for doing so is that
the attacker wants f(kτ − δ) to be as high as possible, and f(kτ − δ + ε) for 0 < ε < τ to
be as low as possible, so as to not ”waste” any of their distribution. Therefore, they will let
f(kτ − δ + ε) = f((k + 1)τ − δ). See Figure 5 for an idea of what this function would look
like.

We may describe the optimal f , f∗, by a non-increasing sequence of points a1, a2, a3... such
that

f∗(x) = 0 | x < 0
ak | (k − 1)τ − δ < x ≤ kτ − δ (18)

We then have

d∆E[u(δ)]

d δ
= −1 +

∞∑
k=1

f(kτ − δ) = −1 +
∞∑
k=1

ak (19)

The requirement that f∗ is a pdf constrains the possible values of ak, since

∫∞
0 f∗(x) dx = (τ − δ)a1 +

∑∞
k=2 τak

= −δa1 + τ
∑∞

k=1 ak

= 1

(20)

We now compare the expected value for the adversary using f∗ with a delay, versus no delay.
It is helpful to use Figure 5 as a guide for the derivation of these formulas.

2We include weak monotonicity in our definition of monotonically increasing or decreasing functions.
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Figure 5: Notional picture of the candidate optimal monotonically
decreasing function that makes delay worthwhile. The y axis is not
to any scale, but preserves the decreasing sense of f ∗.
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E[u(δ)|f∗] = τ
2

∑∞
k=2 ak + τ−δ

2 a1

= 1
2

(
τ
∑∞

k=2 ak + (τ − δ) a1

)
= 1

2(−δa1 + τ
∑∞

k=1 ak)

= 1
2

(21)

Compare this to the expected value for the adversary given no delay.

E[u(0)|f∗] =
∑∞

k=1(τ − τ−δ
2 )ak +

∑∞
k=2

δ
2ak

= − δ
2a1 + τ

2

∑∞
k=1 ak + δ

∑∞
k=1 ak

= 1
2 + δ

∑∞
k=1 ak

(22)

Thus, the expected score given any delay is less than or equal to the expected score given no
delay.

This completes the proof that delay brings no additional utility to the attacker when their
time to success pdf is monotonically decreasing. In general, however, the question still
remains if delay has value in finite duration games. Delay may also be a viable and necessary
choice in multi-asset games, where the attacker has a finite amount of resources to direct at
a set of targets.

An example of a continuous distribution where delay is worthwhile

Consider the following (damped oscillator) function

f(x) =
5π

2τ
sin2(

πx

τ
)e−

πx
τ . (23)

This is a non-negative function that integrates to 1 on the range [0,∞]. We take advantage
of the memorylessness of the exponential and the fact that for every k,

∫ kτ

(k−1)τ
(dx
τ
eτ − x) sin2(

πx

τ
) dx =

τ2

4
(24)

to come up with exact results for expected scores. Without any delay, the expected score for
the attacker is
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E[u(0)] = 5π
2τ

∫∞
0 (dxτ eτ − x) sin2(πxτ )e−

πx
τ dx

=
∑∞

k=1
5π
2τ

∫ kτ
(k−1)τ (dxτ eτ − x) sin2(πxτ )e−

πx
τ dx

=
∑∞

k=1
τe−kπ(7+eπ(5π−7))

5π

= τ(7+eπ(5π−7))
5π

∑∞
k=1 e

−kπ

= τ(7+eπ(5π−7))
5π(eπ−1)

≈ 0.6τ

(25)

Suppose we added a delay of 3τ
4 . Then the expected score for the attacker is

E[u( τ2 )] = 5π
2τ

∫∞
3τ
4

(dxτ eτ − x) sin2(
π(x− 3τ

4
)

τ )e−
π(x− 3τ

4 )

τ dx

=
∑∞

k=1
5π
2τ

∫ kτ
(k−1)τ (dxτ eτ − x) sin2(

π(x− 3τ
4

)

τ )e−
π(x− 3τ

4 )

τ dx

−
∫ 3τ

4
0 (dxτ eτ − x) sin2(

π(x− 3τ
4

)

τ )e−
π(x− 3τ

4 )

τ dx

=
∑∞

k=1
τe−kπ+

3π
4 (29+eπ(35π−29))

20π − τ 28−5∗π+e
3π
4 (35π−29)

20π

= τe
3π
4 (29+eπ(35π−29))

20π

∑∞
k=1 e

−kπ − τ 28−5∗π+e
3π
4 (35π−29)

20π

= τe
3π
4 (29+eπ(35π−29))

20π(eπ−1) − τ 28−5∗π+e
3π
4 (35π−29)

20π

≈ 0.64τ

> E[u(0)]

(26)

In this case, the attacker’s time-to-success distribution is not monotonically decreasing and
has local maxima for positive x. Unlike our earlier example of a situation where attacker delay
has value which used the Dirac delta function, this distribution is continuous and therefore
our earlier analysis shows it should be countered by a periodic defender strategy. This is
another example of a time-to-success distribution where delaying an attack is worthwhile for
the attacker. However, it remains to be shown whether such functions meaningfully represent
any real-world time-to-success distributions.

3.1.3 Defender Strategy for Exponential Attacker Success Distribution

In this section we will analyze the use of the exponential distribution as the attacker’s distri-
bution for time-to-success. We will start with the attacker expected utility until the beginning
of the next attack from Equation 6

E[u] = −α− β
∫ ∞

0
xf(x) dx+ τ

∞∑
k=1

k

∫ kτ

(k−1)τ
f(x) dx−

∞∑
k=1

∫ kτ

(k−1)τ
xf(x) dx,
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and replace the general distribution with the exponential distribution: f(x) = λe−λx.

By substituting f(x) = λe−λx into the equation above, we obtain:

E[u] = −α− 1 + β

λ
+ τ

eλτ

eλτ − 1
(27)

Therefore, the value of τ that pushes the attacker out of the game satisfies the following
equation:

τ = c(1 + e−λτ ), (28)

where

c = α+
1 + β

λ
(29)

By graphically analyzing both sides of the equation above, we can show that there is a unique
value of τ that satisfies this equation as illustrated in the Figure 6.

Figure 6: Both sides of Equation 28. Red - left side, blue - right
side. This illustrates that there exists a single value of τ0 that ensures
expected utility of the attacker to equal to zero.

The Figure 6 shows that there are two points at which the left and the right side of Equation
28 intersect. The intersection at the origin is of no interest to us, and the intersection at
positive value of τ represents the solution to the equation τ0 where the expected attacker
utility equals to zero.

Choice of the Exponential Distribution

In this section, we assume that the attacker’s time-to-success distribution is limited to the
exponential family of distributions. While this simplifies the derivation of attacker and
defender utilities, we came to this choice based on another line of reasoning.

Conceptually, we model an attacker’s activity as a series of attempts to compromise the
contended resource. In this simple model, each attempt independently succeeds with a fixed
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Figure 7: Illustration of the two regimes of the finite PLADD game
between two morph moves. In regime A, the duration of the attack is
governed by fbase(s) and during regime B it is governed by flearned(s)

probability p, hence, the attempts are Bernoulli trials. The number of Bernoulli trials until
the first success is distributed according to the discrete geometric distribution with parameter
p. The continuous analog of the geometric is the exponential. So, we choose to model the
attacker’s time-to-success as a continuous, exponential random variable which captures the
notion of repeated, fixed probability-of-success attack attempts.

3.2 Finite Game

In the finite version of the game, the analysis must be modified to account for the morph
move and the flearned(s) and fbase(s) time-to-success distributions. Since the defender’s
morph move resets the attacker’s time-to-success distribution back to fbase(s) and no other
learning occurs during the game, the finite version of the PLADD game can be analyzed by
considering a single window between successive morph moves.

Next, the interval between morph moves can be analyzed by dividing it into two regimes, as
illustrated in Figure 7. The first regime begins as soon as the defender makes a morph move.
Assuming that the attacker does not delay the start of their next attack (see Section 3.1.2)
they will start an attack at t = 0 using fbase(s). This regime lasts until the attack succeeds
and the defender makes their next move or until the next morph move if the attack has
not succeeded by that point in time. Assuming that the attack succeeds and that the next
defender move is not a morph move, there will be a regime with one or more intervals where
the time-to-success distribution for attacks is flearned(s). In the figure, the first regime,
labeled A, lasts for three intervals. In this example, the attack succeeds after the second take
move and the attacker controls the resource until the next take move. The game then enters
the second regime, labeled B, where flearned(s) applies, which lasts for three intervals. The
attacker succeeds in two of these intervals before the game is reset by the morph move.

The following subsections describe the utility functions for the finite version of the PLADD
game. The first subsection presents the general equations for computing the attacker and
defender utility. The results in this section do not assume that periodic strategies are used
by the defender nor do they make any assumptions about fbase(s) or flearned(s). The second
subsection describes the utility functions when the defender uses a periodic strategy, and
fbase(s) and flearned(s) are characterized by exponential distributions. The second subsection
also compares the results for the infinite and finite cases when exponential distributions are
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used.

3.2.1 General Expected Utility Equations

Here we wish to compute the expected attacker and defender utility for the general finite
PLADD game. Let, EA[fbase, flearned, τ ] and ED[fbase, flearned, τ ] represent the expected
utility for the attacker and defender between morph moves, respectively. The attacker’s
utility can also be represented by EA[fbase, flearned, τ ;α, β] to specify the attack costs. It is
assumed that attacks always start as soon as the attacker loses control of the resource. Let
τ be a sequence of N + 1 times where the defender will make moves and τ0 = 0 corresponds
to the start of the interval being analyzed. The value of τN corresponds to the morph move
which ends the interval being analyzed. Let EL[flearned, j, τ ] be the expected attacker utility
following a successful attack in interval j. Following a successful attack only the flearned(s)
distribution applies. Given this, the expected attacker utility is given by the equation below.

EA[fbase, flearned, τ ] = −α− βτN
∫ ∞
τN

fbase(x) dx

+

N∑
j=1

∫ τj

τj−1

fbase(x)(τj − x− βx+ EL[flearned, j, τ ]) dx (30)

The first term in this equation represents the cost the attacker will pay for starting the attack
at the beginning of the game. The second term represents the expected cost of the initial
attacks that do not succeed before the morph move. In this case, there is no benefit for the
attacker since they will not control the resource. The third term represents the utility to
the attacker given that the initial attack succeeds before the next morph move. This term is
similar to the equation used for the infinite version of the game with two exceptions. First,
the summation in the finite game only goes to N versus ∞ in the infinite game since the
the initial attack will be interrupted by the morph move (move N). Second, this term now
includes EL[flearned, j, τ ]. This term states that the utility is equal to the utility of the initial
attack plus the utility of all subsequent attacks given that the first attack succeeds in interval
j.

The equation for calculating the utility for the second regime of the game can be derived
by noting that given an attack is successful in interval j, the expected utility of that at-
tack is independent of the history of the game. Given this, the equation below shows how
EL[flearned, j, τ ] can be calculated. This equation is essentially the same as the previous
equation. There is a cost for starting the attack, a cost given that it does not succeed and an
expected utility given that it does succeed in interval i. If the attack succeeds in interval i
there will be a utility of EL[flearned, i, τ ] for the subsequent attacks. This defines a recursive
relationship for calculating the expected utility. This recursion ends when the end of the last
interval (N) is reached. EL[flearned, N, τ ] is defined to be zero, since the game is reset when
the defender moves at interval N .
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EL[flearned, j, τ ] = −α− β(τN − τj)
∫ ∞
τN

flearned(x− τj) dx

+
N∑

i=j+1

∫ τi

τi−1

flearned(x− τj)(τi − x− β(x− τj) + EL[flearned, i, τ ]) dx (31)

The equations for the defender’s utility are related to the attacker’s utility. Let EA[fbase, flearned, τ ;α, β]
be the attacker’s utility for a given α and β. If α and β are set to zero, EA[fbase, flearned, τ ; 0, 0]
is the expected total time that the attacker controls the resource between morph moves. Since
the interval between morph moves is τN , the defender should expect to control the resource
for τN − EA[fbase, flearned, τ ; 0, 0] units of time. During each interval the defender will have
two types of costs. First, the defender will have to pay for a single morph move, which can
be charged at the beginning or end of the interval. Second, the defender will have to pay for
N − 1 take moves. Given this, the defender’s utility is represented by the equation below.

ED[fbase, flearned, τ ] = τN − EA[fbase, flearned, τ ; 0, 0]

− cmorph − (N − 1)ctake (32)

3.2.2 Expected Utility Equations for Exponential Distribution

In this section, the expected utility equations for the attacker and defender are derived for
the finite game when fbase(s) and flearned(s) are assumed to be exponential distributions and
a periodic strategy is used by the defender. These results are compared to the infinite version
of the game using an exponential distribution and periodic defender strategy.

Utility of a Single Interval Using flearned(s)

The probability density function of the exponential distribution is f(x) = λe−λx. A key
feature of this distribution is that it is memoryless. A random variable is memoryless if the
probability that the variable exceeds a value s is equal to the probability that it exceeds
a value of s + t given that the value of the variable is greater than any t, as shown in the
equation below. In the context of PLADD, this means that given an attack has not succeed
at some point after it has begun, the distribution function of time until the attack succeeds
is the same as when the attack was initially started.

P (x > s+ t|x > t) = P (x > s), t > 0 (33)

One challenging aspect of the general utility equations for the finite game is that they they
are recursive. However, the memoryless nature of the exponential distribution can be used to
avoid directly calculating this recursion. When the defender makes a take move, one of two
events can occur. If the attacker controlled the resource, the attacker will start a new attack
using flearned(s). If the attacker did not control the resource, their attack will continue.
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However, the memoryless nature of the exponential distribution means that the distribution
of the time remaining on the attack will be flearned(s), in either case. The distribution of the
time-to-success following a take move is independent of the previous state of the resource.
Given this, this version of the finite game can be analyzed by computing the expected utility
of the interval between defender take moves and multiplying the results by the number of
intervals between take moves.

Let plearned be a random variable that represents the utility for a single attack that uses
flearned(s) = λ`e

−λ`s. The expected value of plearned is given by the equations below. The
expected utility can be calculated by dividing the expectation into two cases, one case where
the attack is successful and one where it is not successful. It is successful if it succeeds before
τ . The probability of this event can be found by integrating flearned(s) from zero to τ . If
the attack succeeds the attacker will have to pay the ongoing attack costs until the attack
succeeds. They will also have to pay to start a new attack after the defender moves next.
The benefit they will gain will be the time they control the resource until the next move.
The attack will fail when the duration of the attack is greater than τ . The probability of
this event can be found by integrating flearned(s) from τ to infinity. In this case, there is no
benefit to the attacker and they must pay the ongoing attack costs over the entire interval τ .

E[plearned] = P (Attack success)E[plearned|Attack success]+
P (Attack failure)E[plearned|Attack failure]

=

(∫ τ

0
λ`e
−λ`x dx

)(
− α+

∫ τ

0

λ`e
−λ`x∫ τ

0 λ`e
−λ`x′ dx′

(τ − x− βx) dx

)

+

(∫ ∞
τ
λ`e
−λ`x dx

)
(−βτ) (34)

The equation below shows the expected attacker utility when the integrals in the equation
above are calculated and the result is simplified. This equation represents expected attacker
utility between take moves when flearned(s) applies.

E[plearned] = τ −

(
α+

1 + β

λ`

)
(1− e−λ`τ ) (35)

Infinite Exponential Game Revisited

Before completing the analysis of the finite exponential it is useful to revisit the infinite game
for the exponential case, using the results for E[plearned]. Since the equation above gives the
expected utility between moves when flearned(s) is in effect, it can be divided by τ to produce

an equation for the utility rate of the attacker (U infatt ). This will allow for comparisons of
PLADD games that use different values for τ . In the case where there are no morph moves
(i.e. the infinite version of the game), this equation describes the utility rate of the attacker.
It is useful to compare this result to the equation derived for the infinite version of the game
using the exponential distribution. Equation 27, in the infinite game section of this report,
provides the expected utility per attacker move, whereas this equation describes the expected
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utility between take moves. Despite this difference both equations should have the same root.
Setting the equation below to zero and solving for τ results in the solution shown in Equation
28.

U infatt = 1−

(
α+

1 + β

λ`

)(
1− e−λ`τ

τ

)
(36)

The equation above can be used to determine the defender’s utility rate for the infinite game
(U infdef ). Setting α and β to zero in the equation above yields the expected fraction of time
that the attacker controls the resource. This result can be subtracted from 1.0 to determine
the expected fraction of time that the defender controls the resource. Finally, the rate that
the defender incurs costs must be subtracted. The defender incurs a cost of ctake every τ
units of time. The defender’s utility rate for the infinite game is given by the equation below.

U infdef =
1− e−λ`τ

λ`τ
− ctake

τ
(37)

Utility Equations for the Finite Exponential Game

Next we use the expected attacker utility between moves when flearned(s) applies to calculate
the expected utility between morph moves for the finite game. For clarity, we divide this
analysis into two sections. First, we consider the expected utility for the attacker when there
are no fixed costs for moving (α = 0). Then, we consider the expected fixed costs between
morph moves. The second result can be subtracted from the first result to determine the
total utility for the attacker when all costs are considered in the finite game.

When the fixed attack costs are ignored, the equation below can be used to calculate the
utility for the regime of the game where flearned(s) applies. j is the interval where the attack
using fbase(s) succeeds. If the first attack succeeds in interval j there will be N − j intervals
where the attacker attacks using the learned distribution. Therefore the utility in this interval
can be calculated by multiplying the per-period utility by the number of periods.

EL[flearned, j, τ ] =

(
τ − 1 + β

λ`
(1− e−λ`τ )

)
(N − j) (38)

This result can be substituted into the general equation for the attacker utility (Equation
30), as show in the equation below. In this equation, α has been set to zero, the τ values
have been updated to reflect the defender’s periodic strategy, and fbase(s) and flearned(s)
have been replaced with the exponential distribution.

EA[fbase, flearned, τ ] = −βτN
∫ ∞
τN
λbe
−λbx dx

+
N∑
j=1

∫ τj

τ(j−1)
λbe
−λbx(τj − x− βx+ EL[flearned, j, τ ]) dx (39)
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The equation above can be simplified by calculating the integrals and summations. This
results in the equation below.

EA[fbase, flearned, τ ] = τN − (1 + β)N

λ`
(1− e−λ`τ )

+
(1 + β)

λb
(1− e−λbτN )

(
λb(1− e−λ`τ )

λ`(1− e−λbτ )
− 1

)
(40)

The expected fixed costs for attacks can be calculated using the equation below. The first
term represents the cost that will always be paid by the attacker following a morph move. The
second term represents the subsequent attack costs that will be paid once the game enters
the the flearned(s) regime. The integral is the likelihood that the initial attack succeeds
in interval j. If the initial attack using fbase(s) succeeds in interval j, a new attack will
start in interval j + 1 and an additional fixed cost will be incurred. After interval j + 1,
there will be N − j − 1 intervals where additional fixed costs could be incurred. Since the
exponential distribution is memoryless, the probability of incurring a fixed cost in each of
these remaining intervals (i.e. the probability of attack success in the previous interval)
is independently and identically distributed. This implies that the fixed attack costs in
this interval follow a binomial distribution, where the probability of success is 1 − e−λ`τ .
This probably is calculated by integrating flearned(s) between zero and τ . Multiplying this
probability by N−j−1 results in the expected number of fixed attack costs between intervals
j + 2 and N . Note that if an attack succeeds in the last interval (N) an additional fixed
attack cost will not be generated. This is due to the fact that the next move will be a morph
move that will reset the game and that the cost of the attack that starts immediately after
the morph move is already accounted for.

E[Fixed attack costs] = α+

N−1∑
j=1

(∫ τj

τ(j−1)
λbe
−λbx dx

)(
α+ α(N − j − 1)(1− e−λ`τ )

)
(41)

The equation above can be simplified by calculating the integrals and summations. This
results in the equation below.

E[Fixed attack costs] = α

(
1 + (N − 1)(1− e−λ`τ )

+ (1− e−λbτ(N−1))

(
1− 1− e−λ`τ

1− e−λbτ

))
(42)

Subtracting this result from the finite case where α was set to zero yields the expected
attacker utility, given by the equation below.
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EA[fbase, flearned, τ ] = τN − (1 + β)N

λ`
(1− e−λ`τ )

+
(1 + β)

λb
(1− e−λbτN )

(
λb(1− e−λ`τ )

λ`(1− e−λbτ )
− 1

)

− α

(
1 + (N − 1)(1− e−λ`τ ) + (1− e−λbτ(N−1))

(
1− 1− e−λ`τ

1− e−λbτ

))
(43)

The defender’s utility function can be calculated from the attacker’s utility function. The
attacker costs, α and β, can be set to zero to calculate the expected time the attacker controls
the resource. This result can be subtracted from τN to determine the expected time the
defender controls the resource between morphs. Finally, the morph and take costs can be
subtracted to determine the defender’s utility function.

ED[fbase, flearned, τ ] =
N(1− e−λ`τ )

λ`

− (1− e−λbτN )

λb

(
λb(1− e−λ`τ )

λ`(1− e−λbτ )
− 1

)
−

cmorph − (N − 1)ctake (44)

Comparison of Infinite and Finite PLADD Game Equations

The utility equations for the finite and infinite versions of the game can be compared to
understand the impact of the morph move. In the case of the infinite game, the utility
equations were divided by τ to determine the cost rate. Since the utility equations for the
finite version of the game correspond to the utility between morph moves, these equations
can be divided by Nτ to obtain the utility rate for the finite game (Ufinatt ). This allows these
two versions of the game to be compared.

The equations below show the attacker’s utility rate equations for the infinite and finite game.
The terms in the equations have been arranged so that more direct comparisons can be made.
The equation for the finite version of the game contains the equation for the infinite version
of the game and two additional terms. The term that is subtracted from the infinite utility
rate represents the impact of the morph move on the fraction of time the attacker controls the
resource and spends attacking. If it is assumed that λb/λ` ≤ 1, this term will always decrease
the attacker’s utility. This is reasonable since the morph move should increase the duration
of attacks. This term implies that the addition of a morph move will increase the time the
attacker spends attacking and reduce the time they control the resource. The term that is
added represents the change in fixed attack costs when the morph move is added. Under the
previous assumption, this term will always increase the utility rate. When the morph move
is added, the attacker will succeed less often, therefore they will start fewer attacks (they
will also control the resource less and spend more time attacking). Whether or not these
additional terms produce a net increase or decrease in the utility function compared to the
infinite game depends on the values of the parameters.
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U infatt = 1−

(
α+

1 + β

λ`

)(
1− e−λ`τ

τ

)
(45)

Ufinatt = 1−

(
α+

1 + β

λ`

)(
1− e−λ`τ

τ

)
−

(1 + β)
1− e−λbNτ

λbNτ

(
1− λb(1− e−λ`τ )

λ`(1− e−λbτ )

)
+

α

Nτ

(
e−λ`τ + (1− e−λb(N−1)τ )

(
1− e−λ`τ

1− e−λbτ
− 1

)) (46)

The next set of equations shows the defender’s utility rate equations for the infinite and finite
game. Again, the equation for the finite game contains two additional terms. The term that
is added corresponds to the additional time that the defender controls the resource when the
morph move is added. This term is always positive given the previous assumption about λb
and λ`. The term that is subtracted represents the change in utility related to the cost of
the morph move. If it is assumed that cmorph ≥ ctake, this term will always decrease the
defender’s utility. This assumption is reasonable since the morph move will generally cost
more than the take move. If the morph move was more powerful than the take move and
cost less, the defender would never choose to make a take move. Again, the net change in
the utility rate for the finite game compared to the infinite game depends on the values of
the parameters.

U infdef =
1− e−λ`τ

λ`τ
− ctake

τ
(47)

Ufindef =
1− e−λ`τ

λ`τ
− ctake

τ

+
(1− e−λbNτ )

λbNτ

(
1− λb(1− e−λ`τ )

λ`(1− e−λbτ )

)
−

cmorph − ctake
Nτ

(48)

3.2.3 Verification via Simulation

To help verify our analytic solutions for attacker and defender utility in PLADD with expo-
nential attacker time-to-success, we developed a simple discrete event simulation of the game.
In the simulation, the defender uses a periodic strategy whose rate is given as a parameter.
The attacker and defender are subject to move costs and time-to-success distributions, also
given as parameters. The simulation yields attacker and defender utility rates. Figures 8
and 9 show two example plots of the attacker and defender utility rates in the infinite (no
morph) and finite (morph available) games for a given set of parameters. We compared our
analytic results to the simulation for many values of the game parameters with essentially
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Figure 8: Example simulation-based verification plot for the infinite
game, i.e., without morphs.

identical results. The values produced by our analytic solutions and those resulting from sim-
ulation match extremely closely for games with relatively long duration. The figures show
games of length 1000 time units. For games with shorter durations, the match is still good
statistically, but the variance between runs is higher. Comparing the results from our equa-
tions and the simulator helped us identify both derivation mistakes and simulator bugs. The
results ultimately increased our confidence in the correctness of the analytic game solutions.
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Figure 9: Example simulation-based verification plot for the finite
game, i.e., including morph moves.
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3.3 Value of MTD in PLADD

We are now in a position to attempt to answer our original question, namely, “how much
value does MTD provide to a defender?”. We cannot yet answer that question in general
(See Section 3.4 for the initial derivation of more general defender utility equations). We can,
however, try to answer it for a specific definition of value within the version of PLADD where
defenders use a periodic strategy and attackers are subject to an exponentially distributed
time-to-success. To proceed, we will select a realistic defender goal and compare the cost of
achieving that goal in the infinite PLADD game, where no morph move and, hence, no MTD
is available, vs. the cost required to achieve the same goal in the finite game where morph
moves are available. We believe that this unconventional solution concept tells us more about
our game and the value of MTD within it than more traditional solution concepts like the
locations of Nash or other equilibria.

3.3.1 Defender Goal and Metric

The defender goal we have chosen to use in our MTD analysis is pushing a rational attacker
out of the game. This is typically the ultimate goal of any defender. Other equilibrium-based
metrics often leave defenders in a strange loss equilibrium state that no serious system owner
would willingly accept. A defender pushes an attacker out of the game by making it more
expensive than it is worth to continue. We have a proof, described in Section 3.1.1, that
demonstrates it will always be possible for the defender to play fast enough to force the
attacker out of a PLADD game. We name the defender strategy that results in the attacker
dropping out of the game “deterrence”. The metric by which we will judge MTD within
PLADD is the degree to which having MTD available in an otherwise identical game makes
achieving deterrence less expensive for the defender.

Our evaluation methodology is as follows:

1. Using equation 45, find the optimal (least cost) periodic deterrence strategy (P optinf ) for
the infinite game given the remainder of the parameters

2. Determine defender cost Cdetinf for the strategy P optinf

3. Using equation 46, find the optimal (least cost) periodic deterrence strategy (P optfin) for
the finite game, which may include morph moves, given the same parameters

4. Determine defender cost Cdetfin for the strategy P optfin

5. Determine the value of MTD for that parameter combination (V = Cdetinf − Cdetfin)

6. Plot V against a low-dimensional subset of the PLADD parameters, choosing parame-
ters that have the largest impact on the outcome of V

Our utility equations cannot be solved directly for P opt∗ , the defender period that makes the
attacker’s utility zero, so we solve implicitly for P opt∗ numerically in both the infinite and
finite game cases.
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Figure 10: Sensitivity analysis of PLADD model parameters vs. V,
the value of MTD.

Parameter name Minimum value Maximum value
τ 0.1 100
N 1 100
ctake 0.1 30.0
cmorph 0.1 30.0
α 0.1 30.0
β 0.1 30.0
λbase 0.01 10.0
λlearned 0.01 10.0

Table 1: Parameter ranges used in sensitivity analysis.

3.3.2 Choosing Important Parameters

To keep the number of dimensions reasonable for plotting, we have chosen a small subset
of the model parameters against which to plot V using a simple linear regression-based
sensitivity analysis. In the analysis, we:

1. Define numeric ranges for all PLADD parameters (ranges shown in Table 1)

2. Sample 300 points randomly across those ranges

3. For each sample, use the solution methodology described above to compute V

4. Center the parameter values so that regression coefficients can be compared

5. Fit a linear model of the parameters, two-way parameter interactions, and quadratic
parameters to Probit−1(V )

6. Identify the independent variables with the largest influence on V by comparing model
coefficients βi
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Figure 11: Cost benefit of MTD vs. relative defender cost and relative
attacker time-to-success

Figure 10 shows the results of the analysis of the model parameters. The exercise indicates
that the parameters which have the largest impact on V are the defender’s costs (Cmorph
and Ctake) and the rate of the attacker’s time-to-success distributions (λbase and λlearned).
The fact that those parameters have a larger influence on the value of MTD to the defender
matches our intuition.

3.3.3 Results

Figure 11 shows how the value of having MTD available to a defender changes as the relative
defender cost on the X axis (Cmorph − Ctake) and the relative attacker time-to-success rate
on the Y axis (λlearned−λbase) change for fixed remaining parameters as shown in the graph
title.

The large area of the graph where value of MTD is at or near zero shows immediately
that, at least in PLADD, there are many configurations where MTD provides no additional
value and, hence, shouldn’t be used by a defender even if available. The areas where MTD
demonstrates good value are intuitive, namely when MTD is very cheap (i.e., Cmorph−Ctake
is small) and when the MTD move has a large impact (i.e., λlearned − λbase is large). Once
some combination of the chosen parameters passes a threshold (the bold black line in the

34



Figure 12: Optimal use of the MTD (morph) move by a defender.

graph), the value of MTD grows rapidly. We do not yet know the exact combination of
parameters that determines the location of the transition.

Another interesting feature of MTD in PLADD is that, for many combinations of parameters,
the transition from a regime of not using MTD at all (because it provides no value) to a
regime where the defender uses MTD as aggressively as possible is quite abrupt with little
or no intermediate stage where MTD moves are mixed with non-MTD moves more evenly.
Figure 12 shows the sharp divide between the region where MTD is not used at all (1/N is
near zero) to the region where MTD is used as aggressively as possible (1/N is near one)
for the same parameter combination as shown in Figure 11. This feature of the graph is
dependent on the attacker’s costs. When attacks are dramatically cheaper than defender
moves, the shape of the surface changes and the sharp distinction between regions softens as
shown in Figure 13.

3.4 Exact Solutions for the Finite PLADD Game

In this section we present an initial derivation of a general solution for the defender utility in
the finite PLADD game. In this scenario, the defender is not constrained to periodic moves
and the attacker’s time-to-success is governed by an unspecific probability distribution. In
this case, the defender places n − 1 take moves between morphs. The target scenario we
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Figure 13: More gradual shift between “no use” and “use aggressively”
regions when attacks are cheap.

solve for is when the defender acts to drive an attacker out of the game; a point we have
called deterrence. Subsequently, we use the general equations to derive and briefly explore a
solution for the cases when the attacker’s time-to-success is governed by the exponential and
the uniform distributions. We were unable to completely explore the implications of these
new equations prior to project completion, so that remains future work.

We will start with a general solution for the attacker’s utility. Since we are interested in the
deterrence game setting, we can take the attacker’s utility equation and set it to 0 and use
this result to solve for the optimal set of defender take moves, {τk} where k ∈ [1, n − 1].
Let us start by returning to the recursive definition of the attacker’s utility. In the set of
equations below, the first one defines the recursive step for all intervals after the attacker’s
first successful attack, which occurs before τj . The second equation defines the end of the
recursion at interval τn, the defender’s next morph, and the third equation, handles the
intervals up to and including the attacker’s first successful attack after the defender’s last
morph at τ0. Note, as before, we segment the time between defender morph moves, which
occur at τ0 and τn, into intervals of defender take moves, which occur starting at τ1 and
continuing through τn−1.
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EL[f, j, τj ] = max

(
0,−α− β(L− τj)

∫∞
τn
f(x− τj) dx

+
∑n

i=j+1

∫ τi
τi−1

f(x− τj)(τi − x− β(x− τj)

+EL[f, i, τi]) dx

)
EL[f, n, τn] = 0

EA[fbase, flearned, τ0] = −α− βL
∫∞
τn
fbase(x) dx

+
∑n

k=1

∫ τk
τk−1

fbase(x)(τk − x− βx
′ + EL[flearned, k, τk]) dx

In the deterrence game context, the defender will manipulate the frequency of his periodic
game play in order to assure that the attacker’s utility will be zero. One way that the
defender can accomplish this goal is to choose each τj such that EL[flearned, j, τj ] = 0 for all
j. This choice eliminates the recursion, which simplifies the analysis. These are also points
for which a rational attacker would choose not to continue to play the game.

EL[f, j, τj ] = −α− β(τn − τj)
∫ ∞
τn

f(x− τj) dx

+

n∑
i=j+1

∫ τi

τi−1

f(x− τj)(τi − x− β(x− τj)) dx = 0

At this point we will reorganize the analysis by reversing our perspective and proceeding
from the end of the last interval at τn and move backward toward τ1. We will also introduce
a more compact notation for the expected utility in each interval as

Ek = EL[flearned, n− k, τn−k].

Here k ∈ [1, n− 1]. We will further streamline our notation by introducing ∆k = τn − τn−k
and ∆i,k = τn−i − τn−k = ∆k −∆i, which gives us the following equation for Ek

Ek = −α− β∆k

∫∞
∆k
f(x) dx+

∑k−1
i=0

∫ ∆i,k

∆i+1,k
f(x)(∆i,k − x(1 + β)) dx

= −α− β∆k(1−
∫ ∆k

0 f(x) dx) +
∑k−1

i=0

(
∆i,k

∫ ∆i,k

∆i+1,k
f(x) dx

−(1 + β)
∫ ∆i,k

∆i+1,k
xf(x) dx

)
= −α− β∆k(1−

∫ ∆k

0 f(x) dx)− (1 + β)
∫ ∆k

0 xf(x) dx

+
∑k−1

i=0 ∆i,k

∫ ∆i,k

∆i+1,k
f(x) dx

Note that
∫ ∆i,k

∆i+1,k
represents an integral of the span of the ith take interval, counting up from

the last interval before the next morph, shifted so that τn−k is the 0 point.
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In the deterrence game setting, the defender wants to ensure that Ek = 0 for each k, which
allows us to rearrange the equation above as follows.

α+ β∆k + (1 + β)
∫ ∆k

0 xf(x) dx = (1 + β)∆k

∫ ∆k

0 f(x) dx

−
∑k−1

i=1 ∆i

∫ ∆i,k

∆i+1,k
f(x) dx

(49)

The equation above holds for all k ∈ [1, n − 1] and can be used with a given attacker time-
to-success distribution (f) to determine the optimal set of {τk} for the defender. Note that
the sum on the right hand side has an interesting interpretation. Each term in the sum can
be rewritten as

(τn − τn−i)
∫ τn−i−τn−k

τn−(i+1)−τn−k
f(x) dx

This can be interpreted as the distance between the end of a ”take” interval at τn−i and the
end of the morph cycle at τn multiplied by the fraction of the probability of the attacker’s
time-to-success within the ”take” interval.

When the system of equations (Equation 49 above) is solved for a given k, one more step is
required to figure out the exact numerical value of τ1. (The above system will allow ∆k for
k ∈ [1, n− 1] to be determined). In order to solve for τ1, the formula for EA must be solved
and set to 0. That is,

α+ βτn

∫ ∞
τn

fbase(x) dx+ (1 + β)

∫ τn

0
xfbase(x) dx =

n∑
k=1

τk

∫ τk

τk−1

fbase(x) dx

Here we will rearrange this equation to better match equations presented previously (see
Equation 49),

α+ βτn + (1 + β)

∫ τn

0
xfbase(x) dx = βτn

∫ τn

0
fbase(x) dx+

n∑
k=1

τk

∫ τk

τk−1

fbase(x) dx

We will now use the ∆ notation and simplification as before to make these equations even
more similar.

α+ β∆n + (1 + β)
∫ ∆n

0 xfbase(x) dx = (1 + β)∆n

∫ ∆n

0 fbase(x) dx

−
∑n−1

k=1∆n−k
∫ τk
τk−1

fbase(x) dx

= (1 + β)∆n

∫ ∆n

0 fbase(x) dx

−
∑n−1

i=1 ∆i

∫ τn−i−τ0
τn−(i+1)−τ0

fbase(x) dx

= (1 + β)∆n

∫ ∆n

0 fbase(x) dx

−
∑n−1

i=1 ∆i

∫ ∆i,n

∆i+1,n
fbase(x) dx

(50)
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We now present Equation 49 with flearned replacing f .

α+ β∆k + (1 + β)
∫ ∆k

0 xflearned(x) dx = (1 + β)∆k

∫ ∆k

0 flearned(x) dx

−
∑k−1

i=1 ∆i

∫ ∆i,k

∆i+1,k
flearned(x) dx

The form of these two sets of equations (Equation 49 and Equation 50) are exactly the same,
except for the attacker’s time-to-success distribution function (fbase versus flearned) we are
optimizing with and n versus k in the ∆ notation. These can be solved to determine the
exact sequence of {τk}, given n− 1 take moves before a morph. Furthermore, we can let the
expected score for the defender given these equations be E∗n, after which we can compute the
optimal n to maximize the defender expected score, given the defender is using the deterrence
strategy to drive the attacker out of the game.

We solve for the optimal expected score E∗n, and thus the optimal n, using Equation 49 and
Equation 50 by successively incrementing from the value n = 1. At some point extra moves
will provide diminishing returns. At n = 1, we only use Equation 50 since k < n. For all
n > 1, we use Equation 49 for k ∈ [1, n− 1] and Equation 50 for n.

In the next subsection we will use Equation 49 and Equation 50 to determine the optimal
defender set of take times ({τk}) for the exponential attacker time-to-success distributions.

3.4.1 Exponential Solution

In this section we will estimate optimal move times for the defender given an exponential
time-to-success distribution for the attacker.

Since the attacker’s time-to-success distribution is exponential, we will assume that fbase(x) =
λbe
−λbx and that flearned(x) = λle

−λlx. We can compute the optimal set {τk} as follows.

α+ β∆k + (1 + β)

∫ ∆k

0
xλle

−λlx dx = (1 + β)∆k

∫ ∆k

0
λle
−λlx dx

−
k−1∑
i=1

∆i

∫ ∆i,k

∆i+1,k

λle
−λlx dx

After handling the integrals we get

α+ β∆k + (1 + β)
1− e−∆kλl(1 + ∆kλl)

λl
= (1 + β)∆k(1− e−∆kλl)

−
k−1∑
i=1

∆i(e
−∆i+1,kλl − e−∆i,kλl)
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Here we simply replaced flearned with λle
−λlx in Equation 49. Given this equation we will

solve for ∆1 (i.e., for k = 1),

α+ β∆1 + (1 + β)
1− e−∆1λl(1 + ∆1λl)

λl
= (1 + β)∆1(1− e−∆1λl)

∆1 = (1 + β)
1− e−∆1λl

λl
+ α

∆1λl = (1 + β)(1− e−∆1λl) + αλl

∆1 =
W (−(1 + β)e−(1+β+αλl)) + 1 + β + αλl

λl

In the last step, W is positive branch of the Lambert W function, or product log function.
That is, W (x) makes the following true: x = W (x)eW (x). Now we will return the general
case to solve for ∆k.

α+ β∆k + (1 + β)
1− e−∆kλl(1 + ∆kλl)

λl
= (1 + β)∆k(1− e−∆kλl)

−
∑k−1

i=1 ∆i(e
∆i+1λl − e∆iλl)

e∆kλl

which can be re-arranged and simplified as

α+ β∆k + (1 + β)
1− e−∆kλl − λl∆k

λl

+

∑k−1
i=1 ∆i(e

∆i+1λl − e∆iλl)

e∆kλl
= 0

We can separate the first element from the rest of the summation and re-arrange as

α+ β∆k + ∆k−1 + (1 + β)
1− e−∆kλl − λl∆k

λl

+
−∆1e

∆1λl +
∑k−1

i=2(∆i−1 −∆i)e
∆iλl

e∆kλl
= 0

Since we have previously defined that ∆0 = 0 we get
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α+ β∆k + ∆k−1 + (1 + β)
1− e−∆kλl − λl∆k

λl

+

∑k−1
i=1(∆i−1 −∆i)e

∆iλl

e∆kλl
= 0

Now let

y(λ, j) = −(1 + β + λ(−
j−1∑
i=1

(∆i−1 −∆i)e
∆iλ))e−(1+β+λ(α+∆j−1))

Then we can apply the Lambert W function as before to solve for ∆k

∆k = ∆k−1 + α+
W (y(λl, k)) + 1 + β

λl

Note that

∆n = ∆n−1 + α+
W (y(λb, n)) + 1 + β

λb

and so for n = 1,

∆n =
W (−(1 + β)e−(1+β+αλb)) + 1 + β + αλb

λb

Since the cost for a take move is ctake and the cost for a morph move is cmorph, then

E∗n = 1−
cmorph + (n− 1) ∗ ctake

∆n

The best n and therefore ∆n depend on the parameters of the problem.

Suppose we have the following:

ct = 1.0
cm = 3.0
α = 1.0
β = 0.2
λb = 0.01
λl = 0.1
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In this case, it is more worthwhile for the defender to only have morph moves, spaced every
∆1 ≈ 42.7201 apart, for an expected score of

E∗1 ≈ 0.92978

Suppose instead we have the following:

ct = 1.0
cm = 3.0
α = 1.0
β = 0.2
λb = 0.05
λl = 0.1

In this case, it is more worthwhile for the defender to always take and never morph, with
moves spaced approximately 5.49861 apart, for an expected score of

lim
k→∞

E∗k ≈ 0.81814

In performing a parameter search, it appears that there is no parameterization in which mix-
ing take and morph moves outperforms either only taking or only morphing. The difference
between this result and our earlier simulation results appears to be due to our allowing take
moves to be spaced non-periodically. However, where the expected score for only taking is
very close to the expected score for only morphing, it may be worthwhile to mix moves such
that the defender expected score is roughly the same, but the attacker can’t reliably predict
the upcoming move sequence of the defender.

3.4.2 Uniform Solution

In this section we will compute the optimal defender period in the case where the attacker’s
time-to-success distribution is uniform. Here we assume that fbase is a uniform distribution
with probability pbase and that flearned is a uniform distribution with probability plearned,
and furthermore that pbase ≤ 1

τn
and plearned ≤ 1

τn−τ1 , then we can compute the optimal τ
as follows.

α+ β∆k + (1 + β)plearned
∫ ∆k

0 x dx = (1 + β)plearned∆k

∫ ∆k

0 1 dx

−plearned
∑k−1

i=1 ∆i

∫ ∆i,k

∆i+1,k
1 dx

Thus,

α+ β∆k = (1 + β)plearned
∆2
k

2
− plearned

k−1∑
i=1

∆i(∆i+1 −∆i)
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This is merely a quadratic equation in ∆k, given the ∆i values for i < k.

(1 + β)plearned
2

∆2
k + (−β − plearned∆k−1)∆k

+ (−α+ plearned(

k−1∑
i=1

∆2
i −

k−2∑
i=1

∆i∆i+1)) = 0

Thus,

∆k =
(β+plearned∆k−1)

(1+β)plearned

+

√
(β+plearned∆k−1)2+2(α−plearned(

∑k−1
i=1 ∆2

i−
∑k−2
i=1 (∆i+1∆i)))(1+β)plearned

(1+β)plearned

This is the solution for ∆k where k < n. ∆n is computed by using the ∆k solutions for all
but k = n, and for ∆n solve the above equation with plearned replaced by pbase.

∆n = (β+pbase∆n−1)
(1+β)pbase

+

√
(β+pbase∆n−1)2+2(α−pbase(

∑n−1
i=1 ∆2

i−
∑n−2
i=1 (∆i+1∆i)))(1+β)pbase

(1+β)pbase

If the cost for a take move is ctake and the cost for a morph move is cmorph, then

E∗n = 1−
cmorph + (n− 1) ∗ ctake

∆n

The best n and therefore ∆n depend on the parameters of the problem.

We can make a few additional statements about the nature of ∆k as k grows. Notice that

lim
∆k−1→ 1

plearned

∆k =
1

plearned
+O(

1

(1 + β)
√
plearned

)

Here we are doing some hand waving; the α determines some of the behavior and the O
bound is very approximate. However, empirically it appears that the equations are forcing
all ∆k ≤ 1

plearned
, which means our initial constraint on plearned will always be met. Likewise

for pbase. Our unconstrained uniform solution (see next subsection) provides some math to
show this happening when plearned∆k ≤ 1.

Suppose we have the following:
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ctake = 1.0
cmorph = 3.0

α = 1.0
β = 0.2

pbase = 0.01
plearned = 0.1

In this case, the relative cost of a take to a morph is small compared to the relative likelihood
of attacker time-to-success in base versus learned, so the best expected score comes where
n = 1, where there are no take moves. In this case,

∆1 =
0.2 +

√
0.04 + 0.024

0.012
≈ 37.7485

yielding

E∗1 ≈ 0.9205

To get more interesting behavior, we can make the base time-to-success likelihood closer to
the learned time-to-success likelihood. Consider the following:

ctake = 1.0
cmorph = 3.0

α = 1.0
β = 0.2

pbase = 0.05
plearned = 0.1

This time, n = 2 yields the highest benefit, and

∆1 =
0.2 +

√
0.04 + 0.24

0.12
≈ 6.0763

∆2 =
0.2+0.05∗∆1+

√
(0.2+0.05∗∆1)2+2∗(1−0.05∗∆2

1)∗1.2∗0.05

1.2∗0.05 ≈ 14.9012

yielding

E∗2 ≈ 0.7315

We speculate that more interesting behaviors and better defender solutions will be found if
we resolve these equations removing the constraints on how high pbase and plearned can be.
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Unconstrained Uniform Solution

The defender will want to space their moves as far apart as possible, so they must consider
moves that guarantee attacker success before a morph. Unfortunately, the more take moves a
defender considers, the more the equations determining their decisions may differ, depending
on the magnitude of pl.

E1 and ∆1

Let flearned = f and
∫ 1
p

0 f(x) dx = 1. Then when p∆1 ≥ 1,

E1 = −α+
∫ 1/p

0 f(x)(∆1 − x(1 + β)) dx

= −α+ ∆1 − (1 + β)
∫ 1/p

0 xf(x) dx
= 0

Thus,

∆1 = α+ (1 + β)

∫ 1/p

0
xf(x) dx

When f(x) = pl, then

∆1 = α+
(1 + β)

2pl

p∆1 ≥ 1 implies the constraint

αpl +
(1 + β)

2
≥ 1

pl ≥
1− β

2α

The constraints for our two versions align perfectly. Thus, we have

∆1 =
β+
√
β2+2α(1+β)pl
(1+β)pl

; pl ≤ 1−β
2α

∆1 = α+ (1+β)
2pl

; pl ≥ 1−β
2α

E2 and ∆2

We can extend the last section’s result to a second ”take” move. The new cases to consider
are where ∆2 −∆1 ≤ 1

p ≤ ∆2 and where 1
p ≤ ∆2 −∆1.

Case 1
p ≤ ∆2 −∆1
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This is where the attacker is guaranteed success sometime after the penultimate take move
and before the final take move.

E2 = −α+

∫ 1
p

0
f(x)(∆2 −∆1 − x(1 + β)) dx = 0

This simplifies to

∆2 = α+ ∆1 + (1 + β)

∫ 1
p

0
xf(x) dx

From here, if p∆1 ≥ 1, we get

∆2 = 2∆1

We can here generalize.

∆k = k
(
α+ (1 + β)

∫ 1/p
0 xf (x) dx

)
; p∆1 ≥ 1

For f(x) = pl,

∆k = k(α+ (1+β)
2pl

) ; pl ≥ 1−β
2α

On the other hand, if p∆1 ≤ 1, we again will go straight to the case f(x) = pl, so that

∆1 =
β+
√
β2+2α(1+β)pl
(1+β)pl

and pl ≤ 1−β
2α . We have

∆2 = α+ ∆1 +
1 + β

2pl

Consider when this formula is valid.

1

pl
≤ ∆2 −∆1 = α+

1 + β

2pl
→ 2 ≤ 2plα+ 1 + β → pl ≥

1− β
2α

In other words, this is a case that won’t happen. The implication here is that if we can space
two take moves apart far enough to guarantee success for an attacker yet also an expected
utility of 0 for the attacker, we will space all take moves that same distance apart.

Case ∆2 −∆1 ≤ 1
p ≤ ∆2

This is where, beginning at the penultimate take move, the attacker is guaranteed success
before the next morph move, but not necessarily before the next take move. It implies
∆2 −∆1 ≤ ∆1.
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E2 = −α+
∫ ∆2−∆1

0 f(x)(∆2 −∆1 − x(1 + β)) dx

+
∫ 1
p

∆2−∆1
f(x)(∆2 − x(1 + β)) dx

= 0

This simplifies to

∆2 = α+ ∆1

∫ ∆2−∆1

0
f(x) dx+ (1 + β)

∫ 1
p

0
xf(x) dx

From here, if p∆1 ≥ 1 (meaning attack success was guaranteed within the final take period),
we get

∆2 = ∆1

(
1 +

∫ ∆2−∆1

0
f (x) dx

)

This implies ∆2 ≤ 2∆1. The ∆2 value derives no advantage from the constraint ∆2 −∆1 ≤
∆1, and rather we should let ∆2 = 2∆1 as outlined in the previous case section.

So we conclude that p∆1 ≤ 1. We have no simple formula for ∆1; rather, we have the
following.

α+ β∆1 + (1 + β)

∫ ∆1

0
xf(x) dx = (1 + β)∆1

∫ ∆1

0
f(x) dx

We move ahead to the case where f(x) = pl, so that ∆1 =
β+
√
β2+2α(1+β)pl
(1+β)pl

and pl ≤ 1−β
2α .

∆2 = α+ pl∆1(∆2 −∆1) +
(1 + β)

2pl

∆2 =
2pl(α− pl∆2

1) + (1 + β)

2pl(1− pl∆1)

∆2 =
(1− β)

√
β2 + 2α(1 + β)pl + 1 + 3β

2(1 + β)pl

The constraint pl(∆2−∆1) ≤ 1 implies our old constraint, pl ≤ 1−β
2α . The constraint pl∆2 ≥ 1

lets us derive a new constraint.

(1− β)
√
β2 + 2α(1 + β)pl + 1 + 3β ≥ 2(1 + β)
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(1− β)(
√
β2 + 2α(1 + β)pl − 1) ≥ 0

pl ≥
1− β

2α

We are forced to conclude, therefore, that the circumstance ∆2 − ∆1 ≤ 1
pl
≤ ∆2 doesn’t

occur for uniformly distributed attackers, and therefore that when p∆1 ≤ 1, it follows that
p∆2 ≤ 1. We believe that it also follows that p∆k ≤ 1 for all k < n.

Summary

We have a general solution for when the opponent costs are high enough that we can allow
success between every take and still give the attacker an expected score of 0.

∆k = k
(
α+ (1 + β)

∫ 1/p
0 xf (x) dx

)
; p∆1 ≥ 1

We have solution methods and partial solutions for when relative costs versus success likeli-
hood are lower. The following is for uniform probability attack distributions f(x) = pl

∆k =
(β+pl∆k−1)+

√
(β+pl∆k−1)2+2(α−pl(

∑k−1
i=1 ∆2

i−
∑k−2
i=1 (∆i+1∆i)))(1+β)pl

(1+β)pl
;

∆k ≤ 1

A surprising consequence here is that either defender take moves will not extend past ∆k <
1
pl

,

or else they will be spaced evenly apart and ∆k ≥ 1
pl

, whenever the defender wishes to drive
out the attacker with an expected score of 0. There is no space of interesting behaviors in
between.

4 Stochastic Programming Approach

Optimization arises frequently when analyzing game theoretic models. First, the players are
frequently modeled as rational actors who seek to maximize their benefit subject to their
knowledge of the opponent and system and their own particular objective function. Second,
we can use optimization approaches to directly identify the best outcome a player can achieve
subject to the game and the behavior of their opponent. It is this second class of problems
that we will investigate here. In general, numerical optimization approaches attempt analysis
“between” that of (exhaustive) simulation and closed form analytic models. In simulation,
we select specific player parameterizations and then simulate the game (typically several
times) to approximate the expected outcome (benefit) for each player. Determining the best
outcome for a player requires enumerating over the range of possible combinations of player
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parameterizations. In contrast, analytic approaches seek to develop closed-form expressions
that explicitly capture a feature of interest like a player’s best outcome or the point where
a player will drop out of the game. Closed-form analytic approaches can provide insights
and prescriptive solutions, but usually under very restrictive assumptions and at the cost of
significant research. In this effort, our goal was to explore techniques based on stochastic
programming as an alternative paradigm that fills the gap between exhaustive simulation
and closed-form analytic approaches.

4.1 A Stochastic Programming Model for the FlipIt Game

The key feature of the FlipIt game is the stealthy aspect of both players’ moves. As neither
player can directly or indirectly observe the actions of the other, the game is separable: we
can treat the attacker as exogenous by sampling from their space of allowable moves. We
will then optimize the defender’s move times in response to a finite set of attacker moves. In
the context of stochastic programming, each time series of attacker moves forms an attack
scenario. We want to identify the defender’s optimal set of non-anticipative moves that best
guard against the entire set of attack scenarios. We generate non-anticipative solutions by
forcing the defender to select a single set of moves for all attack scenarios. This corresponds
to a two-stage stochastic problem where the defender’s moves are the (non-anticipative)
first stage variables. Then, in the second stage, the opponent’s moves are revealed and the
scenario-specific utility is calculated. For the trivial case of a single scenario, the player
will respond perfectly to the opponent’s moves. However, as we add scenarios, the player is
forced to hedge against a larger set of possible outcomes. This has the effect of enforcing the
inability of the real defender to observe or respond to the attacker’s moves.

An important feature of this model is that the optimization algorithm will always place
defender moves at the same time as an attacker move in one of the scenarios. This can be
shown by considering a defender move placed between two attack time points (not necessarily
in the same scenario): the defender can always unilaterally improve their utility by shifting
that move up in time to the first attack time in any scenario. This allows us to form a
discrete time model where the defender can only move in a finite set of discrete time points
(the union of all attack times in all scenarios). This model exactly reproduces the optimal
solution for a model where the defender is allowed to move at any time (i.e., no discretization
error), and significantly reduces the computational complexity of the model.

Mathematically, the FlipIt model is given by the following stochastic Generalized Disjunctive
Program (GDP):
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max |T |−1|S|−1
∑

s∈S,t∈T
ρs,t − ctake

∑
t∈T

dt (51)

s.t.


Y1,s,t

as,t = 0
dt = 0

ρs,t = ρs,t−1

∨

Y2,s,t

as,t = 1
dt = 0
ρs,t = 0

∨

Y3,s,t

dt = 1
ρs,t = 1


∀s ∈ S, {t|t ∈ T, t > 0} (52)

Y1,s,t + Y2,s,t + Y3,s,t = 1 ∀s ∈ S, {t|t ∈ T, t > 0} (53)

ρs,0 = 1 ∀s ∈ S (54)

dt ∈ {0, 1} ∀t ∈ T (55)

ρs,t ∈ {0, 1} ∀s ∈ S, t ∈ T (56)

Yi,s,t ∈ {0, 1} ∀i ∈ {1, 2, 3}, s ∈ S, t ∈ T (57)

Here, T is the set of discrete time points where either an attacker move or defender move is
allowed to occur, S is the set of attack scenarios, as,t is a binary parameter that is 1 if and
only if the attacker moves at time t in scenario s, dt is a binary variable that is one if and
only if the defender moves (in all scenarios) at time t, and ρs,t is a binary variable that is 1
if and only if the defender controls the resource at time t in scenario s. Yi,s,t is a Boolean
(binary) variable that indicates the disjunct i in the disjunction at time t on scenario s is
enforced. The resource state, ρ, is set by the disjunction (52), and the constraint (53) forces
exactly one of the three transitions stated in (52) to be active at any time in any scenario.
As written, the objective (51) assumes uniformly spaced discrete time points, which is the
case we investigate here. This assumption can be relaxed by scaling the individual ρs,t terms
by the time between time point t and the next time point and removing the |T |−1 prefactor.

An important aspect of this model is that we are not forcing the defender to move with any
particular strategy: the strategy can be inferred from the final selected move times. Similarly,
the attacker is not forced into a single strategy: we are free to use any scheme to generate the
attack scenarios. It was very encouraging that, given a series of attacker scenarios sampled
from an attacker moving periodically with a fixed rate, the optimal defender moves were
indeed periodic, as predicted by the analytic results in [28].

It is also important to note that this model approximated the original FlipIt game in two
ways: first is the approximation due to a finite number of attacker scenarios. The second is
that the model solves for a fixed, finite time horizon, H. Obviously, as H and the number of
scenarios go to infinity the model will recover the exact results of the original FlipIt game.
We investigated this by varying the number of scenarios and the game horizon for a specific
parameterization of the player costs. Figure 14 shows optimal defender move rates over a
range of attacker move rates for differing horizons and number of scenarios. This shows that
even at very low numbers of scenarios and short horizons we can get solutions very close to
expected value for the infinite-time game.

We can now look at the effect the ratio of the defender’s move cost to the benefit obtained
for possessing control of the resource has. Figure 15 shows that as the defender’s move
cost decreases relative to the benefit of control, the optimal defender move rate increases for
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Figure 14: Effect of finite horizon and limited attack scenarios on
the optimal defender move rate. Each trace shows the optimal de-
fender move rate (Y-axis) for a given attacker move rate (X-axis) for
a different horizon (4, 8, 16, 32, and 64 attacker moves).
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Figure 15: Optimal attacker (blue) and defender (red) move rates for
various move costs. The noise is due primarily to limited samples at
high move rates. The slight asymmetry in the response curves reflects
underlying asymmetries in the FlipIt game.

any expected attacker move rate. The noise in the optimal response curves is due to error
introduced by the finite model horizon and under-sampling of the attacker scenario space.
We also note that as the game is separable and symmetric, we can switch the roles of the
attacker and defender in our stochastic programming model and calculate optimal attacker
profiles as well. It is significant to note that the results are not exactly symmetric: this is due
to two asymmetries in the model: the resource is defined to be under control of the defender
at t = 0, and in the event that both players move at the same time, the defender always
gains control of the resource.

4.2 A Stochastic Programming Model for the PLADD Game

On the surface, the PLADD model is fundamentally different from FlipIt: whereas FlipIt was
separable – allowing the attacker and defender to be analyzed independently – the presence
of the morph move and the effect it has on the subsequent attacker time to success represents
endogenous uncertainty that couples the two players together. However, because the morph
move functions as a complete reset on the attacker’s probability of success (f is completely
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reset from flearned back to fbase), no information can leak across the morph boundary. This
allows us to exactly analyze the infinite-time PLADD game as a single finite-time game
where the period of the morph moves sets the time horizon, H. We will further simplify our
model by considering the case of a fixed horizon (morph move interval) and a fixed number
of defender moves. This changes our optimization from maximizing utility to minimizing the
expected time that the attacker controls the resource.

The remaining challenge is capturing the additional information that is provided to the
PLADD attacker, namely that the attacker is informed when they lose control of the resource.
The net effect of this information is that the attacker will delay the start of their next attack
until the first defender take move after their previously successful attack. As a result, we
can no longer deterministically sample the time points that the attacker gains control of the
resource as that time depends on when it lost control of the resource. However, the time
until success (φ) for any individual attack can be sampled from a known distribution (fbase
or flearned). This allows us to create attack scenarios that consist of a vector of φ values, Φ,
with Φ0 sampled from fbase and Φ1..ms from flearned). Each scenario will capture a different
number of attacks (ms), such that∑

i∈{0..(ms−1)}

Φi < H ≤
∑

i∈{0..ms}

Φi (58)

The stochastic program then attempts to determine the amount of time the attacker controls
the resource for each attack in each scenario (χs,a). As the optimization algorithm will
attempt to minimize the expectation of the total time that the attacker controls the resource,
the key choice is to determine into which interval between defender moves each attack falls.
The optimal defender moves will still occur at the same time as an attacker move in one
of the attack scenarios. However, unlike FlipIt where the number of attack times grows as
|S| ∗ |A|, because the attack times are dependent on the defender move times, the finite set
of attacker move times grows as |S||D|. This is large enough to prevent exact discretization
of time. Instead, we pose the following continuous-time model:
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min
∑

s∈S,a∈ms

χs,a (59)

s.t.


Ys,a,d

tAs,a ≤ tDd

∨


¬Ys,a,d

χs,a ≥

tDd+1 − tAs,a if d < max (D);

H − tAs,a if d = max (D);


∀s ∈ S, a ∈ {0..ms}, d ∈ D (60)

tAs,a = tAa−1 + χs,a−1 + Φs,a ∀s ∈ S, a ∈ {1..ms} (61)

tAs,0 = Φs,0 ∀s ∈ S (62)

tDd ≥ tDd−1 ∀{d|d ∈ D, d > 0} (63)

ψs,a =
∑

i∈{o..a}

Φs,i ∀s ∈ S, a ∈ {0..ms} (64)

ψs,a ≤ tAs,a ≤ H + ψs,a ∀s ∈ S, a ∈ {0..ms} (65)

0 ≤ tDd ≤ H ∀d ∈ D (66)

0 ≤ χs,a ≤ H ∀s ∈ S, a ∈ {0..ms} (67)

Ys,a,d ∈ {0, 1} ∀s ∈ S, a ∈ {0..ms}, d ∈ D (68)

Here tAs,a is a continuous variable giving the success time of attack a in scenario s. Similarly,

tDd is a continuous variable giving the time of the dth defender take move. ψs,a a connstant
reflecting the earliest possible success time for attack a in scenario s. Continuous variable
χs,a is the amount of time the attacker controls the resource after the completion of attack
a in scenario s.

Binary variables Ys,a,d control the disjunction (60), which either allows a particular scenario
attack to succeed before the start of a specific defender interval (before the previous defender
take time, tDd−1), or the time that the attacker controls the resource due to that attack is

lower-bounded by the end of the interval (the next defender take time, tDd ) minus the attack
success time, tAs,a. Consider the ath attack success time and the dth take time in a scenario
s. This is a relevant pair if the attacker control acquired in attack a is stopped by take d.
The first disjunction handles the case where the attacker control gained by attack a is halted
by an earlier defender take move (d− 1 or earlier). In this case, this pair doesn’t matter for
setting χs,a. If the attack a is stopped by a take later than d, then tDd − tAs,a will be negative
(the success time for attack a is after take d). Then the constraint in the second part of the
disjunction is trivial. Only when the right-hand side of that constraint is positive will the
constraint have an impact. This sets χs,a to the time between the ath attack success and the
retake on the dth take. The objective function pressure forbids χs,a being any larger than
the largest right-hand side from these disjunctions.

Constraints (62) enforce that the first attack begins at time 0 and succeeds after Φs,0 (drawn
from the distribution fbase). Constraints (61) enforce that the attack success times after the
first attack are equal to the previous attack success time, plus the time the attacker holds
the resource (that is, the time to the next take) plus the time to run the next attack. This
assumes the attacker starts a new attack immediately after the defender takes control of the
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resource. Constraints (63) enforce ordering for the defender take moves (that is, take d + 1
must occur after take d). Constraints (64) define the constants ψs,a. The remainder of the
model (65-68) specifies upper and lower bounds on all model variables.

It is also useful to note that this model reduces to a continuous time model of the FlipIt
game by removing the χs,a term from (61):

tAs,a = tAa−1 + Φs,a ∀s ∈ S, a ∈ {1..ms} (69)

However, unlike the FlipIt model, which solves even relatively large models to optimality in
a few minutes, neither the continuous time PLADD model nor the continuous time FlipIt
model is computationally tractable. A single modest PLADD instance optimizing the time
of 12 defender take moves over 30 scenarios had only closed the optimality gap to 31.9% after
10 days on a 32-core workstation. Scenario-based decomposition approaches were similarly
unable to close the gap in a reasonable time. This will become even more problematic
for realistic problem sizes: to reasonably capture the exponential distributions for f , we
would need to solve problems with 100-200 scenarios. There are numerous opportunities
for improving the performance of this approach, through innovations in both modeling and
solution algorithms (see Section 6.7).

4.3 Alternative Combinatorial Scheduling Formulation

Expressing the stochastic programming version of PLADD in the language of combinatorial
scheduling is another conceptual approach. Combinatorial scheduling is a popular area in
theoretical computer science and operations research. This equivalent version of the problem
may be easier to understand.

Suppose we have a set of m scenarios. Each scenario corresponds to one draw from the fbase
distribution followed by up to t draws from the flearned distribution, where t is the number
of takes before a morph. Let T be the number of ticks in the time horizon. In PLADD, T is
the time between two morphs, which need not be consistent. We wish to schedule the set of
t takes within this T -tick time horizon.

We can think of each scenario as a machine. Each machine has a list of jobs, each with a
deterministic run time. The machine need not process all its jobs, but what it does process
must be in the order from the list.

At the start of time (tick 0), each machine starts to process its first job. Whenever there is a
start time, which corresponds to a take in PLADD, each machine that has finished its current
job can start the next job on its list. Machines still working on a job must continue working
on the current job. The goal is to schedule t global start times (take times) to minimize the
total idle time over all machines. The idle time on a machine corresponds directly to the
amount of time the attacker is in charge of a resource in the given scenario.

Without loss of generality, we can drop jobs and/or truncate the last job so that the sum
of the processing times for the jobs for a given machine is at most T . If there is only one
machine, then the optimal schedule is to start a new job at the point the previous job finishes.
If a machine’s list has t+ 1 jobs whose total length is L < T , then that machine must incur
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T − L ticks of idle time in any solution. These machines have more flexibility. That is, the
start times can move away from job end times, with as much as T−L total space between jobs
while still being optimal. Of course an optimal global solution will in general be sub-optimal
for many or all individual machines.

There exists an optimal schedule where each start time corresponds to the time a job ends
on some machine. To see this, consider a schedule where there are t’ ticks where all machines
are idle before a new start. Moving the start ahead t’ ticks and keeping all the other start
times at the same relative positions opens up t’ ticks at the end of the schedule without
removing any productive time from any machine. If a machine was previously running a job
that would have run past time T , that machine replaces at least some idle time with time
running that job. Therefore the idle time cannot be increased and could be decreased.

This is an unusual scheduling model because there is forced idle time on a machine. A job is
available, the the machine cannot run it because it is awaiting the next start time. There are
scheduling models where such unforced idle time is optimal, but for the cases we are aware
of, such structure is beneficial for the objective function.

Suppose we are given t1 the value of the first non-trivial start time (time 0 is a trivial start
time). Then the placement of the remaining t−1 start times is a new problem with the same
overall structure as the first. Machines that were idle at time t1 (that is, the length of their
first job is at most t1) have job list equal to the original with the first job gone. Machines
that are still busy at time t1 (the length of their first job is ` > t1) have the previous job list
with the first job’s length reduced to `− t1. If there were initially t jobs in the list, the last
job is dropped since there are now only t− 1 job starts remaining.

Each choice of first start time t1 gives a different new problem. So, using only the property
that each start time (take) occurs at the time a job finishes on some machine, there are mt

possible schedules. This is generally far too many to enumerate. If job run times are general,
we do not expect sums of job lengths to be coincidentally equal. For example, if `ij is the
length of the jth job on the ith machine, we do not expect `11 + `22 = `21 + `12. Thus we do
not expect dynamic programming to yield a polynomial-time algorithm.

5 Related Work

The principles of MTD have been known and used by militaries for a very long time. The
Art of War advises “Keep your army continually on the move, and devise unfathomable
plans.” [27]. Use in the computing realm is obviously more recent [18, 10, 9], but techniques
like periodic password changes and crypto-key rotation are as old as the discipline.

5.1 Effectiveness of MTD

More recently, researchers have begun examining the effectiveness of MTD techniques. Shacham
et al. studied the practical effectiveness of address space layout randomization (ASLR) in
2004 and found that, because of implementation limitations like incomplete randomization
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and small address spaces, ASLR was less effective against a determined adversary than one
might have expected [24]. Even without those shortcomings, they showed that dynamically
updating ASLR’s memory object mappings will provide at most a factor of two increase in
the effort required by an attacker over single shot address space randomization.

Evans et al. considered the general effectiveness of MTD [8] against a variety of attacker
strategies like circumvention, deputy, probing, and incremental. They confirmed Shacham’s
results for basic ASLR and proposed other defense scenarios where MTD may have more
value. They show that scenarios where multiple MTD techniques are composed or when a
defender can force an adversary into an incremental attack approach that MTD can have a
larger effect.

Our work on PLADD complements this earlier work by making the technical impact of MTD
a parameter and by explicitly incorporating attacker and defender costs. We show that, for
our formulation of the game, that there are cost configurations where MTD provides little
or no cost benefit in acheiving a defensive goal like driving an attacker out of the game. We
also show that the transition between the regime where a rational defender will choose never
to use an available MTD move, because it does not add value, and where they will use the
MTD move almost exclusively is typically quite abrupt.

5.2 Game Theoretic Analysis

van Dijk et al. recently introduced the FlipIt game [12, 28, 3]. A simple game theoretic
framework for examining attacker and defender strategies for competitive games where little
is known about the moves of an adversary. While simple, the basic FlipIt game exhibits
interesting and complicated behaviors. Subsequently, many researchers have extended FlipIt
to include additional features like multiple contested resources [15], defender probes [19],
multiple attacker classes [16] and MTD [31].

Our PLADD game follows this pattern by introducing new features to FlipIt that implement
one view of MTD. Our model of MTD was developed independently of Wellman et al. [31], but
has similar features. While their solution uses empirical game theoretic analysis [30] where
simulations are used to fill out a large game matrix and then solved using an automated
solver like Gambit [17], we provide analytic solutions for attacker and defender utilities and
costs.

6 Future Work

PLADD has demonstrated its value as a tool for exploring the dynamics of MTD for a
variety of simple scenarios. The project, however, has generated many more questions about
the practice of modeling cyber conflict than it has answered. In this section, we highlight a
few interesting research directions.
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6.1 Adaptive Player Agents

This project introduced and studied PLADD, an extension of the FlipIt model to evaluate
MTD. While supporting far richer dynamics than FlipIt, the PLADD model shares some
common limitations with it, such as the lack of adaptability of the player agents and the lack
of multiple, heterogeneous adversaries. In order to capture additional important elements of
real-world adversarial environments, the PLADD model will need to be extended to be able
to support learning by the player agents, as well as the presence of multiple adversaries, each
with a different objective and cost function, such as the differences between cyber-criminals
and nation state adversaries either trying to steal secrets or cripple capabilities. Where
periodic strategies are currently optimal, once adversaries can learn, they will be able to
exploit the predictability of periodicity, making less predictable strategies almost certainly
superior. The presence of multiple, heterogeneous adversaries will make it difficult to choose
a single defensive strategy, causing a critical bottleneck in cyber security decision-making.

6.2 Coevolution

Game theory allows for the mathematical analysis of adversarial interactions, but the char-
acterizations are generally limited to very simple models. Computational game theory is
focused on scaling classical game theory to large, complex systems modeling more real-world
environments. One promising approach is coevolution, where each player’s strategy and
fitness is dependent on, and evolves to reflect, their complex environment and potentially
heterogeneous adversaries [21]. The proposed extensions to PLADD will quickly make it
intractable for analytical analysis and classic game theory. However, coevolution, a powerful
heuristic approach which trades guarantees of optimality for vastly superior scalability, can
be employed to evolve adaptive strategies for the defender and all adversaries, leveraging
the analytical insight from simpler models to provide initial strategy seeding. It has pre-
viously successfully been applied in critical infrastructure protection [23]. This approach is
particularly well suited for identifying superior, less predictable strategies for scenarios with
multiple, heterogeneous adversaries.

6.3 Mapping to Real-World Scenarios

Another important step in extending the current work is to calibrate it to real-world scenarios
through systematically tuning the model parameters in a principled manner to each scenario,
and then to study its predictive capabilities for those scenarios. By doing so for both the
current form of PLADD and the proposed extensions, the required model fidelity can be
determined for obtaining satisfactory modeling capabilities. Previous work has provided
solutions for Stackelberg games with a worst-case guarantee with respect to the solution
quality without making any assumption about the attackers’ behavior model, as well as
more robust solutions with guaranteed good defender utility against all reasonable quantal
response attackers [11]. It may be worthwhile to adapt that work to PLADD to form a
starting point for the proposed computational game theory approaches.
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6.4 Using Risks and Expected Payoffs for Strategy Design
and MTD Implementation

The work presented in this report focuses on understanding the expected utility of attackers
and defenders and assumes that their decisions will be made based on those values. This
ignores the importance of risks associated with specific strategies and objectives. The ability
to take defender and the attacker risks into account when designing their respective strategies
may substantially impact strategy selection as well as in-game and real-world outcomes. For
example, in addition to pushing the attacker out of the game, the defender may want to
design a strategy that maximizes or otherwise controls the risk taken by the attacker as well
as controls risks taken by the defender. It is also necessary to understand how the deployment
of MTD affects the risk profile of attacker and defender. One possible approach for including
the results of such analyses in the decision making process is to represent the risk-reward
trade-offs as an efficient frontier where each payoff is associated with the minimum risk at
which it can be achieved.

6.5 Apply Martingale Representation and Game-Theoretic
Probability to Information Acquisition and Strategy Develop-
ment

The approach this paper takes to defender strategy analysis has drawn inspiration from Glenn
Shafer’s, Vladimir Vovk’s, and Akimichi Takemura’s work on Game Theoretic Probability
and Defensive Forecasting. Their approach to strategic interaction using martingales served
as a starting point to the formulation of the problem, the attacker expected utility definition,
and to the choice of the deterrence solution as a cornerstone of the analysis of PLADD.

However, this analysis can be expanded significantly by understanding 1) when (in general)
the attacker payoff is a martingale for MTD?; 2) What generic strategies the defender can
employ to enforce the martingale property of the attacker strategy?; 3) How the attacker’s
expected payoff can be conditioned on all the information acquired by the defender during
the game? Understanding the last item would allow fine-grained real-time control of attacker
outcomes by the defender.

We believe connections to the signal processing literature should be explored in conjunction
with the martingale representation as well. It is interesting to notice that the expression un-
der the integral in Equation 5 in Section 3 can be thought of as a convolution of the defender
strategy or its effect on the attacker payoff and the attacker success probability density func-
tion, thus bringing multiple connections to signal processing, reliability, stochastic control,
and Fourier transformations. In this interpretation, the effective defender strategy is repre-
sented by a saw-tooth function that linearly decreases in the range of (τ, 0) on each interval
(ti, ti+1) for any i ∈ {1, ...,∞}. This also allows a possibility of using well-established decon-
volution algorithms by both the attacker and defender to estimate each others’ strategies, in
addition to the possibility of applying learning approaches to the same problem.
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6.6 Using Adversarial Games for Creating Resilient Cyber
Systems

Complex cyber systems are normally designed or evolve to optimize costs with resilience
as a secondary consideration. Random or adversarial shocks are seen as something to be
avoided. An alternative is to design systems that learn and benefit from shocks. We believe
this is an achievable goal and draw inspiration from four areas: our current work described
in this report in creating mathematical and game-theoretic models for MTD; game-theoretic
probability and on-line conformal prediction pioneered by Shafer and Vovk [25, 29]; resilience
science currently developed at Sandia; and our preliminary efforts on understanding the
mechanisms for anti-fragility [26].

The distinctive feature of cyber attacks is the inability, at least so far, to create a model that
represents the domain with sufficient completeness that attacker and defender strategies can
be confidently developed and tested within such models. New attack and defense methods are
discovered routinely. One such example is MTD. Therefore, the defender is generally playing
an incomplete information game against novel and only partially observable strategies. This
makes online learning from shocks and surprises necessary and unavoidable.

Our goal is to develop principles for designing cyber systems that benefit from shocks and to
develop strategies that enable the necessary information processing and learning, while con-
trolling for risks. We explicitly recognize that information derived from a system’s response
to shocks needs to be incorporated into system operator strategies.

The game-theoretic model described in this report could be used as an inspiration for this
approach. PLADD treats an adversarial game between an attacker and a defender as a
stochastic process. We have shown that, in certain games, the defender has the ability to
control the attacker payoff process and, for example, force the attacker payoff to become
a martingale with zero expected payoff. We also have an indication that certain defender
strategies and system design choices allow the defender to introduce intentional shocks in
order to delay attacker learning or allow the system to experience external or adversarial
shocks without significant performance degradation.

In PLADD, implicit information is generated, but, at present, it is not taken into account by
either defender or attacker. This information can be used to estimate attacker or defender
strategies. Strategies learned on one asset can be deployed on a different asset. Actions,
such as introducing intentional shocks to the system, for example by making potentially
suboptimal moves, can be taken to speed up learning about an adversary, as well as to
disrupt learning by the adversary.

The generally non-stationary character of repeated adversarial games makes much of ex-
isting machine learning, which is based on learning stationary distributions, only partially
applicable. We propose using on-line conformal learning and game-theoretic probability as
a starting point. This approach is based on martingales and is suitable for learning over
time in systems with memory and path-dependence. Conformal predictors can be used with
many existing machine-learning algorithms and allow hedging predictions in an on-line set-
ting. Game-theoretic probability allows designing strategies against both probabilistic and
non-probabilistic adversaries.
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6.7 Stochastic Programming Approaches

The Stochastic Programming (SP) approach to analyzing models like PLADD is promising
both due to its flexibility and expressivity. However, to deploy these approaches in practice
will require significant development of both modeling tools and algorithmic kernels. We see
significant opportunities in three key areas:

Dynamic discretization of continuous-time SP. Continuous-time representations are more
compact and avoid discretization errors that impact adversarial systems model fidelity
and corresponding solutions in practice, but they are computationally challenging. Ex-
tending ideas from Dantzig-Wolfe decomposition (column generation) to balance the
accuracy of continuous-time models with the computational tractability of discrete-
time models to preserve fidelity, while managing problem growth is a promising area of
research.

Adaptive SP through lazy scenario generation. In many cases a handful of the sce-
narios in a SP problem have the bulk of the impact on the algorithm convergence and
accuracy. It is possible that new SP algorithms could “lazily” incorporate scenarios
only when necessary to improve SP convergence or accuracy. SP run-times are more
tractable with fewer scenarios. A major impediment to scalable SP algorithms for ad-
versarial systems analysis is the number of scenarios required to accurately represent
the space of attack scenarios. A “lazy” approach to SP mitigates this complexity by
initially considering a small number of representative scenarios. As convergence of SP
decomposition algorithms proceeds, solutions can be assessed in terms of sensitivity to
new candidate solutions. Those new attack scenarios that significantly impact SP so-
lutions can then be incorporated incrementally, and in a targeted manner. The overall
result will be a significant reduction in both the overall number of iterations required
for convergence, and the total amount of computation performed across the iterations.

Improved SP decomposition solvers. There are numerous opportunities to accelerate
scenario-based SP decomposition algorithms (Progressive Hedging) using approaches
like cross-scenario cutting planes, upper bounding techniques, dynamic scenario re-
bundling, and dynamic algorithmic tuning. Scenario-based SP decomposition is a scal-
able solution approach for deploying parallel compute resources to reduce run times.
However, novel extensions are required to address SPs in adversarial systems con-
texts. In particular, cycling and related behavior is a major issue observed when using
scenario-based SP for solving adversarial systems models. The proposed techniques are
critical for solution of such models, which we have demonstrated to be intractable even
given weeks of compute time with current algorithmic approaches.

7 Conclusion

The goal of this project was to evaluate the general effectiveness of MTD using simple,
abstract models. Our game theoretic model, PLADD, intentionally excludes many details
that would be important when implementing meaningful MTD in a real system, but which
would complicate analysis. PLADD does, however, include features that we believe represent
the essence of MTD, namely information that is available to an attacker which, if known,
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makes attacks easier, and the ability of a defender to take that information away, at least
temporarily.

We prove that, in PLADD, it is always possible for the defender to play fast enough to drive
the attacker out of the game. We also prove that, in PLADD, an attacker has very limited
strategies. For the important class of monotonically decreasing time-to-success distributions,
the rational attacker will always begin attacking immediately after losing the resource and,
hence, cannot choose the time of their attacks.

We have analytic solutions for defender and attacker utility in PLADD for general distribu-
tions of attacker time-to-success and generic defender strategies. For a sub-case of PLADD
where defenders are limited to periodic strategies and attacker time-to-success follows an
exponential distribution, we have performed a detailed analysis of a new, non-equilibrium
metric that measures the difference in cost for a defender to drive a rational attacker out of
the game when MTD is available vs. when MTD is not available. That analysis shows:

1. For large fractions of this version of PLADD’s parameter space, MTD is not cost effec-
tive.

2. The fraction of the parameter space where MTD is effective shrinks as attacker costs
go down.

3. The defender (intuitively) receives the largest benefit from MTD when MTD moves are
powerful and cheap.

4. In many configurations, the defender transitions abruptly from never using MTD, be-
cause it is not cost effective, to using MTD as aggressively as possible.

Analyzing the abstract PLADD game was a challenging exercise that resulted in insights
into the dynamics of MTD and raised many interesting questions about modeling strategic,
adversarial scenarios. We believe, however, that to be truly useful, future models should be
based on real-world scenarios and be calibrated using real-world data.
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